
1 |

An NL-based Foundation for Increased

Traceability, Transparency, and Speed in
Continuous Development of Information Systems

Bert de Brock
University of Groningen

Faculty of Economics and Business
The Netherlands

E.O.de.Brock@rug.nl

2 |

Contents of the talk

•  Context: Problem background (w.r.t. Requirements Engineering)
•  Sketch of a development path for a single functional requirement
•  (Incremental/Agile) Development of a system
•  A general (linguistic) structure for a development path
•  Some frequently used action verbs (related to CRUD)
•  Summary

 | 2

3 |

Problem background (I)

Some problems in developing information systems:

- users’ language/thinking vs. developers’ language/thinking ⎤ (very) old
- user wishes are unclear (at least initially) ⎦ problems

- from automating known processes to enabling entirely new business models

-  (very) quickly changing circumstances ⎤ relatively newer problems
-  therefore user wishes change (‘requirements drift’) ⎥ but becoming
- ‘times to market’ should be shorter and shorter ⎦ stronger and stronger

Consequences for the (development) project:
- not within budget ⧹ failing the
- not within time │ basic project
- inadequate functionality ⧸ requirements

 | 3

4 |

Problem background (II)

First group of problems

Users’ language/thinking vs. developers’ language/thinking:

•  Users’ language/thinking: Usually (unbounded) natural language (processes, data)
•  Developers’ language/thinking: Schema’s, models, input/output, parameters, etc.

User wishes/requests are (initially) unclear (although the requester thinks they are clear):

•  Unclear functionality (what should the system do?)
•  Undefined scope (boundaries of the system?)
•  Which actors are involved: which people (or user groups) and (software) systems?
•  Vague basic notions (even ‘flight’, ‘study’, ‘exam’, ‘bed’; are often homonyms)

 | 4

5 |

Overview of a development path for a single FR

Straightforward path from a simple user wish to an information system:

UW User Wish Natural language expression

 ↓

US User Story Natural language sentence

 ↓

UC Use Case Sequence of natural language sentences

 ↓

SSD System Sequence Diagram Use Case in schematic form

 ↓

IM Information Machine Mathematical (machine) model

 ↓

IS Information System Software

 | 5

6 |

From User Wish via User Story to Use Case

UW1 Register a student

US1 As an administrator, I want to

 Register a student with a given name, address, and phone number

UC1 1. The administrator (user) asks the system to

 Register a student with a given name, address, and phone number
 2. The system uses the next unused student number as the new student number
 3. The system registers the name, address, phone number, and student number
 4. The system returns the assigned student number to the user
 5. The system increases the next unused student number by 1

‘Stepwise clarification’ / ‘Stepwise specification’

 | 6

7 |

A sample System Sequence Diagram

1. User → System: RegisterStudent(<name>, <address>, <phone number>);
2. System → System: use the next unused student number as the new student number;
3. System → System: register the name, address, phone number, and student number;
4. System → User: “Assigned student number is ” <student number>;
5. System → System: increase the next unused student number by 1

(Often drawn in a UML-diagram)

We can distinguish 3 types of relevant basic steps (where Actor ≠ System):

Actor → System: Elucidates the inputs the system can expect (input step)
System → System: Elucidates the transitions (and checks) the system should make (internal step)
System → Actor: Elucidates the outputs the system should produce (output step)

 | 7

8 |

Information Machine (formal definition)

An information machine is a 5-tuple (I, O, S, G, T) consisting of:
q  a set I (of inputs), called its input space
q  a set O (of outputs), called its output space
q  a set S (of states), called its state space
q  a function G: I × S → O (the output function),

 mapping input-state pairs to the corresponding output
q  a function T: I × S → S (the transition function),

 mapping input-state pairs to the corresponding next state

In a picture (with i ∈ I and s ∈ S):

 input transition output
 | 8

 i →

 s ⟼ T(i,s)

→ G(i,s)

9 |

A sample Information Machine
State space Consists of

o  an integer-valued component (NUSN: ℕ) and
o  a table-valued component (STUD), with 4 attributes (+ their value sets):

 NAME: Str, ADDR: Str, PHNR: Str, SNR: ℕ

For this SSD:
Inputs { RegisterStudent(n,a,p)│n ∈ Str and a ∈ Str and p ∈ Str }

 For state s and input i = RegisterStudent(n,a,p):

Outputs G(i,s) = “Assigned student number is ” & s(NUSN)

Transitions T(i,s) is the state in which the new NUSN-value is s(NUSN) + 1 and
 the new STUD-value is s(STUD) ∪ {t1};
 here t1 is the function defined by
 t1(SNR) = s(NUSN), t1(NAME) = n, t1(ADDR) = a, and t1(PHNR) = p

 | 9

10 |

A sample Information System (Data Structure)

State space of the IM is translated to a data structure in the IS.
Sample data structure in (pseudo-)SQL:

CREATE DATABASE StudentRegistration /* Student registration database

Data structure
CREATE TABLE STUD
(NAME VARCHAR NOT NULL,
 ADDR VARCHAR NOT NULL,
 PHNR VARCHAR NOT NULL,
 SNR INTEGER NOT NULL)

CREATE VARIABLE NUSN AS INTEGER

 | 10

11 |

A sample procedure (implementing a user wish)

Procedure (in SQL) implementing the user wish UW1 (Register a student)

CREATE PROCEDURE RegisterStudent @name VARCHAR, @addr VARCHAR,

 @phnr VARCHAR, @output VARCHAR OUTPUT AS

BEGIN INSERT INTO STUD (NAME, ADDR, PHNR, SNR)

 VALUES (@name, @addr, @phnr, NUSN);
 SELECT @output = “Assigned student number is ” & NUSN;
 UPDATE NUSN SET NUSN = NUSN + 1

END

 | 11

12 |

(Incremental/Agile) Development of a System

 | 12

UWs

USs

UCs

SSDs

IM

IS

UW … UW

 ↓ … ↓

 US … US

 ↓ … ↓

 UC … UC

 ↓ … ↓

SSD … SSD

 ↘ … ↙

 IMv1 →

 ↓

 ISv1 →

⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞

→

→

UW … UW

 ↓ … ↓

 US … US

 ↓ … ↓

 UC … UC

 ↓ … ↓

SSD … SSD

 ↘ … ↙

→ IMv2 →

 ↓

→ ISv2 →

⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞
⁞

→

→

…

…

13 |

A general (linguistic) structure for a development path

 | 13

UW

α a β (α: action verb, β: noun phrase)

US

As a <role>, I want to α a β with a given <parameter list>

UC

First step: The <role> (user) asks the system to α a β with a given <parameter list>

SSD

First step: User → System: αβ(<parameter list>) where User is a <role>

IM

Inputs: αβ(<parameter list>) for all possible value combinations of <parameter list>

IS

Method/procedure αβ with <parameter list> (plus maybe an output parameter)

of which the body stems from the UC/SSD-structure and the IM-details

Note the transparency and (bi-directional) traceability,

from the original user wish to the final software code and vice versa.

This will also speed up development, especially in case of changes/adaptions

Summary of the Relationship between the Subsequent Grammatical Forms

14 |

Some frequently used action verbs (CRUD)

Some basic action verbs for functional requirements:
Cf. the well-known CRUD-operations (Create, Read, Update, and Delete)

 | 14

 CRUD

 Some alternatively used action verbs
 Create

 Register, Add, Enter, Insert
 Read

 Retrieve, View, See, Search
 Update

 Refresh, Change, Modify, Edit, Alter, Adapt, Replace, Rename
 Delete

 Remove, Destroy

15 |
A general linguistic structure for
some frequently used action verbs

Grammatical Forms for each CRUD-Case (Basic FR Category)

 | 15

Verb α

Form in the US/UC-part

Form in the SSD/IM-part

C

Create/Register/…

α a β with a given <parameter list>

αβ(<parameter list>)

R

Read/Retrieve/…

α the β with a given <ID>

αβ(<ID>)

U

Update/Refresh/…

α <par. sub-list> of the β with a given <ID>

αβ(<ID>, <par. sub-list>)

D

Delete/Remove/…

α the β with a given <ID>

αβ(<ID>)

16 |

Summary

q  We sketched a straightforward development path for functional requirements,

 all the way from initial user wishes up to a software realization

 (say, a method in an OO-system or a (stored) procedure in a relational system)

q  Since the path is NL-based, users can write and/or validate it (up to the UC/SSD)

q  We presented some general linguistic structures and forms for such paths

q  Those structures made the paths transparent and easily traceable (back and forth)

q  We also memorized some frequently used action verbs (CRUD)

 | 16

