Research on NLP for RE at Utrecht University *A Report*

<u>Fabiano Dalpiaz</u> and Sjaak Brinkkemper Requirements Engineering Lab Utrecht University, the Netherlands March 18, 2019

I. Team overview

Goal of the RE-Lab

Requirements Engineering

Requirements Engineering (RE) is the discipline that is concerned with understanding, modeling and specifying, analyzing and evolving the requirements of software systems. The Requirements Engineering Lab (RE-Lab) at Utrecht University is involved in several research directions with the common objective to **help people express better requirements** in order **to ultimately deliver better software**. Our recipe involves the use of state-of-the-art, innovative techniques from various disciplines (computer science, logics, artificial intelligence, computational linguistics, social sciences, psychology, etc.) and to apply them to solve real-world problems in the software industry.

Research themes, illustrated

The RE-Lab team

Principal investigators

Researchers

External members

Master's students

GitHub repository

https://github.com/RELabUU

Requirements Engineering Lab UU A central repository for all projects produced by members of the RE lab Utrecht University Teams 1 Repositories People	
Find a repository Type: All - Language: All -	Customize pinned repositories
aqusa-core A command line version of the AQUSA tool Python Updated 24 days ago	Top languages ● Python ● HTML ● JavaScript ● R ● TeX
HTML Updated on Jan 4	People 8>
revv-light Identify terminological ambiguity and incompleteness in user stories ● HTML ★ 1 Updated on Jan 3	Invite someone

@2019 Fabiano Dalpiaz

2. NLP research at the RE-Lab

User story requirements: As a NLP4RE attendee, I want to see the presentations schedule, so that I can skip Fabiano's talk

AQUSA: examples

As a user, I want to be able to select different types of recyclable waste, so I have and get a list of facilities that accept each type and their opening hours, so that I can find an optimal route and schedule.

As a Publisher,	
I want to know if this site has a pricing plan and what the	e prices are,
so that I can work out what	

I want to print a report,

Not well-formed

so that my customers consider me a professional consultant.

AQUSA: evaluation

Five criteria implemented

- Precision 72%,
- Recall 93%
- Original goal: 100% recall

Garm Lucassen · Fabiano Dalpiaz · Jan Martijn E.M. van der Werf · Sjaak Brinkkemper

Longitudinal study in three companies for two months

- Better user stories
- No improvements of project mgmt. metrics

Improving user story practice with the Grimm Method: A multiple case study in the software industry

> Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. van der Werf and Sjaak Brinkkemper REFSQ'17

RE Journal 16

As a $\langle visitor \rangle_{ent}$,

 $\langle I \rangle_{=visitor} \text{ want to } \langle choose \rangle_{rel} \text{ an } \langle event \rangle_{ent}$

so that $\langle I\rangle_{=\textit{visitor}} \ \mathsf{can} \ \langle \mathsf{book}\rangle_{\mathit{rel}}$ a $\langle \mathsf{ticket}\rangle_{\mathit{ent}}$ for that $\langle \mathsf{event}\rangle_{\mathit{ent}}$

As a $\langle visitor \rangle_{ent}$, $\langle \mathbf{I} \rangle_{=visitor}$ want to $\langle choose \rangle_{rel}$ an $\langle event \rangle_{ent}$ so that $\langle I \rangle_{=visitor} \operatorname{can} \langle book \rangle_{rel}$ a $\langle ticket \rangle_{ent}$ for that $\langle event \rangle_{ent}$ As a visitor, money save I want to filter on free events choose so that I can save money visitor event book filter on

ticket

free event

Jan Martijn E.M. van der Werf · Sjaak Brinkkemper

@2019 Fabiano Dalpiaz

RE Journal 17

Interactive Narrator (a rendering engine for the Visual Narrator)

Positive results

- High precision and recall in the extracted concepts (~90%)
- Perceived useful for training learners by practitioners

Negative results

- Low cognitive scalability: we moved from large collection of user stories to large models
- NLP issues
 - Hard to cope with compound nouns
 - Difficult to associate the right object to the verb

Terminological ambiguity

Quasi-synonyms in user stories

- Problem: are those two words referring to the same entity?
 - image gallery gallery
 - image picture
 - to view to see
- Idea: to combine semantic similarity with info. visualization

Terminological ambiguity

- The REVV-Light tool
 - Input = Visual Narrator's output
 - Calculates semantic similarity between the terms
 - Semantic fingerprinting
 - Synonyms are possible ambiguities

Experiments with REVV-Light

- Quasi-experiment against manual inspection
 - > 28 real-world data sets, 2,000+ requirements
- Results about our approach
 - Manual inspection was better in the time constrained setting
 - High usability expectations by the participants
 - The similarity algorithm needs context information!
- General finding: reaching consensus on ambiguity is <u>hard</u>!

Detecting terminological ambiguity in user stories: Tool and experimentation

Fabiano Dalpiaz^{a,*}, Ivor van der Schalk^a, Sjaak Brinkkemper^a, Fatma Başak Aydemir^b, Garm Lucassen^c

Side output of the project

http://dx.doi.org/10.17632/7zbk8zsd8y.1

Requirements data sets (user stories)						
Published: 28 Jul 2018 Version 1 DOI: 10.17632/7zbk8zsd8y.1						
Contributor(s): Fabiano Dalpiaz						
Description of this data	Latest version					
A collection of 22 data set of 50+ requirements each, expressed as user stories. T from software companies with a permission to disclose.	Version 1 2018-07-28					
The data sets have been originally used to conduct experiments about ambiguity https://github.com/RELabUU/revv-light	Published: 2018-07-28 DOI: 10.17632/7zbk8zsd8y.1					
Experiment data files	Download all files (22)	Cite this dataset				
	^	Dalpiaz, Fabiano (2018), "Requirements data sets (user				
g02-federalspending.txt	11 KB 🥑 Cite 坐	stories)", Mendeley Data, vl http://dx.doi.org/10.17632/7zbk8zsd8y.1				
g03-loudoun.txt	9 KB 😝 Cite 🖄					
g04-recycling.txt	7 KB 🤿 Cite 坐	Statistics				
g05-openspending.txt	9 KB 👩 Cite 🖄	Views: 130 Downloads: 15				

3

Requirements from competitors

The RE-SWOT method

NLP: feature extraction

The RE-SWOT Matrix

Feature Performance Score	Арр 📫	Reference app	Competitor app
Positive and above market average		Strength	Threat
Negative and below market average		Weakness	Opportunity

@2019 Fabiano Dalpiaz

4

The RE-SWOT Matrix, visualized

3. Future directions

A. Linking reqs to architectures

- Establish traceability links via linguistic analysis
- Especially useful in software product companies
 - The linkage can be assisted by glossaries

B. Automated elicitation via chatbots

RE-Lab's research paradigm in the past few years

Future paradigm: Chatbot conversation

C. Synthesis of creative requirements

Kano's model

- Can we automatically synthesize creative / exciting requirements?
- Work-in-progress with
 - Semantic similarity
 - Semantic role labeling
- The challenge? Requirements that make sense!

Thanks from the Requirements Engineering Lab at Utrecht University!

Fabiano Dalpiaz Sjaak Brinkkemper Marcela Ruiz Sietse Overbeek Davide Dell'Anna Eduard C. Groen Gerard Wagenaar

f.dalpiaz@uu.nl