
Badly written requirements can be misleading, redundant or lack information.
Therefore, they should be scrutinized before further use. An automatic way to do so
is desirable, though, since requirements should save rather than cost work.

We considered a rule-based approach promising, because those rules are easy to
maintain and the narrow linguistic variation in requirements should allow good
results.

We consulted the literature and identified ten defects to be relevant for our
purposes. We then wrote the rule-script soley on the description of the defects in
the literature.

After the rule script has been written, a test corpus consisting of 100 randomly
picked requirements out of a stock for information technology systems for
command and control, has been built, to check which defects occur how often, and
also to evaluate the rule script.

Detection of Defective Requirements Using Rule-Based Scripts

Project Description

Conclusion

Basic System Architecture

The Defects and why they are considered as such

F R A U N H O F E R I N S T I T U T E F O R C O M M U N I C AT I O N , I N F O R M AT I O N P R O C E S S I N G A N D E R G O N O M I C S

True
Positive

False
Positive

False
Negative

Precision Recall F1

Total 108 40 38 0.73 0.74 0.753

Empty
Verbphrase

23 13 12 0.639 0.657 0.648

Incomplete
Condition

0 5 4 0.0 0.0 0.0

No Atomicity 66 22 12 0.75 0.846 0.795

Passive 17 0 0 1.0 1.0 1.0

Quantor 1 0 3 1.0 0.25 0.4

Vague Adjective 1 0 7 1.0 0.125 0.222

Defects and their occurrences in the Test Corpus

Defect Example Concern Occurence per 100

Empty
Verbphrase

“The system should perform a data
transfer regularly.”

The action should be expressed
through the main verb.

35

Incomplete
Condition

“In a state of emergency, the system
needs to transfer data via radio.”

How should data be transferred
normally?

4

No Atomicity
“The application should transmit data via
radio and run on every operating
system.”

This should be two requirements. 78

Passive “The system should be updated.”
Doesn‘t specify who‘s

responsible.
17

Quantor
“All users should have access to the
database.”

Should really all the users have
access?

4

Vague Adjective
“The system should transmit data
quickly.”

How quick is considered quickly? 8

Indefinite
Article

“Ein Soldat muss das System bedienen
können.”

In German, the indefinite article
and the numeral one are

homonymous.
0

Temporal
Clause

“While the system is booting up, data
musn’t be sent.”

What is actually meant is a
condition.

0

Redundant
Clause

“The administrator needs to change data
at any time in order to help the user
with his problems.”

No need to justify a requirement
at this place.

0

Incomplete
Comparison

“The system needs to be faster.” Faster than what? 0

 The rules did good on the most common defects
 Several defects mentioned in the literature didn’t occur at all in our corpus
 Slight rule adjustments will lead to better results

The rule to annotate passive makes use of the strict German word-order, which
has to be followed in requirements. Requirements always use a modal verb, e.g.
should. In German, this pushes the other verbs to the end of the sentence with
the past participle preceding the auxiliary. The sentence in the picture translates
as “A QOS-Model should be built for the system”.

Example: Passive

Evaluation of the Rules Script

Hanna Geppert – (49) 228 9435-505 – hanna.geppert@fkie.fraunhofer.de

Michael Dembach – (49) 228 9435-175 – michael.dembach@fkie.fraunhofer.de

Hussein Hasso – (49) 228 9435-698 – hussein.hasso@fkie.fraunhofer.de

Example: Empty Verbphrase

An empty verbphrase consists of a verb with very broad meaning and a noun that
expresses the actual process. It is considered a defect because the main verb of
the requirement should express the process. The sentence in the picture translates
as “The system should perform a transmission.”

