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} ML in the broad 
sense includes 
Neural Network 
architectures such 
as BERT, GPTs, …

} Hundreds of 
papers and tools

} Applied (hammer?) 
to many SE
problems

https://github.com/saltudelft/ml4se
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} Given
} A set of labels

} E.g., bug and feature request

} A labelled dataset
} E.g., a collection of user reviews each representing a bug, a feature request, both, or neither

} A classification algorithm builds a model that
} describes the labelled dataset as accurately as possible
} predicts accurately the labels of unseen datasets
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Zoom-in on classification, reprise
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} Given
} A set of labels

} E.g., bug and feature request

} A labelled dataset
} E.g., a collection of user reviews each representing a bug, a feature request, both, or neither

} A classification algorithm builds a model that 
} describes the labelled dataset as accurately as possible
} is expected to predict accurately the labels of unseen datasets
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Classification research in NLP4RE
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Liping Zhao, Waad Alhoshan,  Alessio Ferrari, 
Keletso J. Letsholo, Muideen A. Ajagbe, Erol-
Valeriu Chioasca, and Riza T. Batista-Navarro. 
Natural Language Processing (NLP) for 
Requirements Engineering: A Systematic Mapping 
Study. ACM Computing Surveys 54:3, 2022

Classification algorithms 
are used not only by 
“requirements. 
classification” tools, 
but also for tracing, 
defect detection, …
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} Iris is a requirements analyst who wants to categorize a large collection of 
requirements from their company

} Iris comes across the following results from a prominent paper

Can Iris trust that similar performance will 
be obtained on the company’s dataset?
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Fabiano Dalpiaz, Davide Dell'Anna , Fatma Basak Aydemir, Sercan Çevikol: 
Requirements Classification with Interpretable Machine Learning and 
Dependency Parsing. RE 2019: 142-152



Credible research? Under certain assumptions
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Does the dataset resemble 
PROMISE NFR?

- ✅ Maybe the result can be 
transferred

- ❌ Iris may need to re-train 
the classifier, perhaps by 
labeling hundreds of reqs.

Fabiano Dalpiaz, Davide Dell'Anna , Fatma Basak Aydemir, Sercan Çevikol: 
Requirements Classification with Interpretable Machine Learning and 
Dependency Parsing. RE 2019: 142-152
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} We aim to provide researchers with a framework that enables and fosters 
publishing (more) credible results

} ECSER pipeline: Evaluating Classifiers in Software Engineering Research
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} Bottom line: we do not want to blame researchers!
} Our team made and still makes mistakes when reporting results

} So, why ECSER?
} ML libraries, code snippets, ChatGPT make ML accessible to non-experts
} Performance metrics are often chosen based on previous work
} Statistical analysis on multiple datasets is still rare



3.  Introducing ECSER
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ECSER: an overview

@2023 Fabiano Dalpiaz16

} ECSER focuses on 
Treatment Validation
} Treatment = a classifier
} Two macro phases
} Iterative, as typical in ML

} Treatment design is outside
the scope of ECSER
} Dataset selection & curation
} Feature engineering
} Algorithms selection
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} In SE, data originates from different projects
} p-fold cross-validation extends k-fold cross-validation with per-project splits 

(as opposed to random splits)
1. Given a set P of projects, take a subset S⊂P to train the classifier
2. Test the classifier on the remaining P \ S
3. Take another subset S’ of the same size of S
4. Train the classifier on S’
5. …

p-fold generally introduces
more diversity than k-fold

18
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ECSER’s highlight #3: the confusion matrix
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} Reporting on the confusion matrix provides transparency as it allows to 
derive all metrics and to easily inspect the results

Martijn van Vliet, Eduard C. Groen, Fabiano Dalpiaz, Sjaak Brinkkemper: 
Identifying and Classifying User Requirements in Online Feedback via 
Crowdsourcing. REFSQ 2020: 143-159
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} We suggest two specific metrics to better analyze performance

training set

test set

validation setOverfitting = Test –Training 

Degradation = Test –Validation 
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ECSER’s highlight #5: the ROC plot
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} The ROC plot can be used to
visualize performance across
multiple datasets

} … also, to explore the effect
of the discrimination threshold
between positives and negatives
(not shown here)



ECSER’s highlight #6: statistical tests

@2023 Fabiano Dalpiaz23

} Which statistical test to
use? ➡
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} Which statistical test to
use? ➡

} Not only p-value. Also,
effect size! ⬇
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} Seminal classification problem that
aims at identifying NFRs (or qualities) 
for initial architectural design

} Dozens of tools in the literature
} Keyword based, ML & DL classifiers, 

zero- and few-shot learning…
} Often using the PROMISE NFR dataset
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} Most of the literature uses PROMISE NFR
} 625 requirements that pertain to 15 student projects
} Generally, the studies only perform validation, no testing
} We define two classifiers: isFunctional and isQuality

} We use the holdout method
} Training on 12 datasets, testing on the remaining one (repeat 13 times)
} No hyper-parameter tuning (validation, S3-S4)
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S2 & S5. Training and testing the model
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} Training is performed on PROMISE NFR
} In line with the literature

} Testing is performed, as just said, according to the holdout method
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S6. Reporting the confusion matrix
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} This is simply a presentation of the raw results…

} But some aspects already stand out!
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S7-S8. Performance and overfitting
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} For simplicity, let’s examine F1 here

} Who’s the winner?
} km500 fits best the training set
} norbert has the best performance on the test set
} ling17 has the smallest overfitting



S9. ROC Plot (for isFunctional)

@2023 Fabiano Dalpiaz31

} norbert is closer to the ROC heaven 
(top-left corner) for many datasets

} ling17 tends to have more false 
positives

} km500 has more false negatives



S9. ROC Plots (isF and isQ)
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Worse performance for the isQ case (the more interesting class!)
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S10. Statistical tests
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} Is one of these classifiers significantly better?
} The results are mixed

} Yes, for km500 vs. norbert in the isFunctional case
} Almost never for isQuality (only recall when comparing ling17 and norbert)
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In summary
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} We confirm that norbert outperforms both ling17 and km500 on unseen data
} But hardly in a statistical sense (could be due to insufficient data points)

} The “losers” still have good properties:
} ling17 has the smallest overfitting
} km500 fits best the training data

} For norbert, the original paper showed equivalent performance for isQ and isF. 
This is not the case in our experiments on the test sets.
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Flakeflagger: Predicting flakiness without rerunning tests. In 2021 IEEE/ACM 43rd 
International Conference on Software Engineering (ICSE), pp. 1572-1584. IEEE, 2021.
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} Flaky tests are tests with non-deterministic outcomes on the same code
} We took three approaches from the literature

} FF (FlakeFlagger):  an approach based on machine learning
} Voc: a keyword-based approach to determine flakiness
} VocFF: a combination of the previous two

} Previous results showed that FF and VocFF outperform Voc
} They reported performance based on cross-validation (no test set)

Alshammari, Abdulrahman, Christopher Morris, Michael Hilton, and Jonathan Bell. 
Flakeflagger: Predicting flakiness without rerunning tests. In 2021 IEEE/ACM 43rd 
International Conference on Software Engineering (ICSE), pp. 1572-1584. IEEE, 2021.



How did we create a test set?
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} We start from their dataset (22 projects)
} We order the projects by # of flaky tests
} We alternatively assign the projects with 

more positives to train and test set
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Results, quick overview
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} Training and validation as in the original paper, but…
} Performance on the test set changes drastically: contradictory results

} Voc is best when applied on unseen data
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Follow ECSER’s steps for 
a more complete reporting 

of research results



What’s next for the ML4SE and NLP4RE community?
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Use multiple datasets, unless
(i) data labeling is practically possible
(ii) you can prove that real-world 

datasets are homogeneous



What’s next for the ML4SE and NLP4RE community?
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Evolve ECSER and the 
research methods in the field

A few directions
- What happens with zero-shot learning 

where training is not necessary
- What are the “right” statistical tests?
- What are the most suitable metrics?
- Beyond classification – other ML tasks



Thank you for listening! Questions?

f.dalpiaz@uu.nl @FabianoDalpiaz

RE-Lab’s research illustrated, 2018


