On the quest for more credible results in ML4SE research

Fabiano Dalpiaz

Requirements Engineering Lab Utrecht University, the Netherlands April 17, 2023

🄰 @FabianoDalpiaz

Outline and Acks

Dr. Davide Dell'Anna Utrecht University Netherlands

Dr. F. Başak Aydemir Boğaziçi University Turkey

Davide Dell'Anna, Fatma Basak Aydemir, Fabiano Dalpiaz: Evaluating classifiers in SE research: the ECSER pipeline and two replication studies. Empir. Softw. Eng. 28(1): 3 (2023)

I. Background on ML4SE

ML4SE research is (becoming) pervasive

i≣ README.md

Machine Learning for Software Engineering

last commit march

This repository contains a curated list of papers, PhD theses, datasets, and tools that are devoted to research on Machine Learning for Software Engineering. The papers are organized into popular research areas so that researchers can find recent papers and state-of-the-art approaches easily.

Please feel free to send a pull request to add papers and relevant content that are not listed here.

Note: to quickly access this page, use ml4se.dev

Content

Papers

- Type Inference
- Code Completion
- Code Generation
- Code Summarization
- Code Embeddings/Representation
- Code Changes
- Bug/Vulnerability Detection
- Source Code Modeling
- Program Repair
- Program Translation
- Program Analysis
- Software Testing

machine-learning research tools											
deep-learning code											
software-engineering papers datasets											
theses ml4code tudelft ml4se											
ai4code											
口 Readme ☆ 235 stars ② 20 watching											
양 28 forks											
Report repository											
Contributors 5											

- ML in the broad sense includes Neural Network architectures such as BERT, GPTs, ...
- Hundreds of papers and tools

https://github.com/saltudelft/ml4se

ML4SE research is (becoming) pervasive

i = README.md

Machine Learning for Software Engineering

last commit march

This repository contains a curated list of papers, PhD theses, datasets, and tools that are devoted to research on Machine Learning for Software Engineering. The papers are organized into popular research areas so that researchers can find recent papers and state-of-the-art approaches easily.

Please feel free to send a pull request to add papers and relevant content that are not listed here.

Note: to guickly access this page, use ml4se.dev

Content

Papers

- Type Inference
- Code Completion
- Code Generation
- Code Summarization
- Code Embeddings/Representation
- Code Changes
- Bug/Vulnerability Detection
- Source Code Modeling
- Program Repair
- Program Translation
- Program Analysis
- Software Testing

machine-learning research tools										
deep-learning code										
so	ftware-	engineering	papers	datasets						
th	eses	ml4code	tudelft	ml4se						
ai	4code									
Π	Readn	ne								
3	235 st	tars								
20 watching										
父 28 forks										
Report repository										
	ma de so th ai 2	machine-l deep-lear software- theses ai4code ☐ Readn ☆ 235 st ∂ 20 wa & 28 for Report rep	machine-learning r deep-learning code software-engineering theses ml4code ai4code □ Readme ☆ 235 stars ⊃ 20 watching & 28 forks report repository	machine-learning research deep-learning code software-engineering papers theses ml4code ui4code tudelft ai4code 235 stars 20 watching 28 forks seport repository seport repository						

- Contributors 5

- ML in the broad sense includes Neural Network architectures such as BERT, GPTs, ...
- Hundreds of papers and tools
- Applied (hammer?) to many SE problems

https://github.com/saltudelft/ml4se

- Given
 - A set of labels
 - E.g., bug and feature request
 - A labelled dataset
 - E.g., a collection of user reviews each representing a bug, a feature request, both, or neither

- Given
 - A set of labels
 - E.g., bug and feature request
 - A labelled dataset
 - E.g., a collection of user reviews each representing a bug, a feature request, both, or neither
- A classification algorithm builds a model that

- Given
 - A set of labels
 - E.g., bug and feature request
 - A labelled dataset
 - E.g., a collection of user reviews each representing a bug, a feature request, both, or neither
- A classification algorithm builds a model that
 - describes the labelled dataset as accurately as possible

- Given
 - A set of labels
 - E.g., bug and feature request
 - A labelled dataset
 - E.g., a collection of user reviews each representing a bug, a feature request, both, or neither
- A classification algorithm builds a model that
 - describes the labelled dataset as accurately as possible
 - predicts accurately the labels of unseen datasets

- Given
 - A set of labels
 - E.g., bug and feature request
 - A labelled dataset
 - E.g., a collection of user reviews each representing a bug, a feature request, both, or neither
- A classification algorithm builds a model that
 - describes the labelled dataset as accurately as possible
 - predicts accurately the labels of unseen datasets

Table 2: Summary of the exploratory mapping study of the proceedings of the ICSE conference from the year 2019 through 2021.

Year	2019		2020		2021		Total	
Accepted ICSE papers (Main track)	109		129		138		376	
Papers related to classification	19	(17.43%)	14	(10.85%)	27	(19.57%)	60	(15.96%)

An example of classification in NLP4RE

Zoom-in on classification, reprise

- Given
 - A set of labels
 - E.g., bug and feature request
 - A labelled dataset
 - E.g., a collection of user reviews each representing a bug, a feature request, both, or neither
- A classification algorithm builds a model that
 - describes the labelled dataset as accurately as possible
 - predicts accurately the labels of unseen datasets

Zoom-in on classification, reprise

- Given
 - A set of labels
 - E.g., bug and feature request
 - A labelled dataset
 - E.g., a collection of user reviews each representing a bug, a feature request, both, or neither
- A classification algorithm builds a model that
 - describes the labelled dataset as accurately as possible
 - is expected to predict accurately the labels of unseen datasets

Classification research in NLP4RE

Tool Type	Tool Name (Study ID)	No. Tools	Percent
Modeling	OICSI (S678), NL-OOPS (S553), EA-Miner (S499), CM-Builder (S343), Circe (S34), LIDA (S623), NIBA Toolset (S272), RETNA (S108), aToucan (S909), DBDT (S31), Cico (S34), NL2UMLviaSBVR (S70), RADD-NLI (S121), SUGAR (S190), GRACE (S208), AREMCD (S219), RUCM (S227), RSLingo (S266), Zen-ReqConfig (S482), TREx (S496), NAPLES (S499), GeNLangUML (S551), ConstraintSoup (S600), C&L (S707), AnModeler (S799), SBEAVER (S813), KCMP Dynamisch (S272), Xtext (S20), Kheops (S35), Visual Narrator (S683), ProcGap (S800), FeatureX (S772), CMT & FDE (S261), VoiceToModel (S765)	34	26.15%
Detection	ARM (S861), SREE (S812), RQA (S903), AnaCon (S41), REGICE (S55), NARCIA (S56), LELIE (S75), SRRDirector (S86), MIA (S114), KROSA (S178), NAI (S226), QuARS (S232), CAR (S252), CARL (S298), RAVEN (S303), ReqSAC (S370), RAT (S376), MaramaAIC (S395), RESI (S432), RECAA (S447), DeNom (S448), RETA (S450), AQUSA (S501), Dowser (S644), QAMiner (S661), LeCA (S701), S-HTC (S258), CNLP(S464), Pragmatic Ambiguity Detector (S256), ReqAligner (S663), REAssistant (S662)	31	23.85%
Extraction	findphrases (S13), AbstFinder (S307), FENL (S71), NAT2TESTSCR (S131), NLP-KAOS (S132), SAFE (S385), AUTOANNOTATOR (S433), UCTD (S453), GUEST (S598), Guidance Tool (S688), SpecQua (S743), NAT2TEST (S744), semMet (S777), Test2UseCase (S810), OCLgen (S845), Text2Policy (S872), GaiusT (S888), SNACC (S891), Doc2Spec (S897), ARSENAL (S915), MaTREx tool (S284), ELICA (S2), CHOReOS (S520), GuideGen (S907)	24	18.46%
Classification	ASUM (S129), RUBRIC (S223), WCC (S257), NFR2AC tool (S306), ALERTme (S332), PUMConf (337), FFRE (S341), AUR-BoW (S500), SEMIOS (S550), CRISTAL (S629), CoReq (S672), SD (S674), ACRE (S757), SOVA R-TC (S778), SMAA (S788), CSLabel (S892), HeRA (S718), NFR Locator (S758), SURF (S910), NFRFinder (S647)	20	15.38%
Tracing & Relating	Coparvo (S24), Trustrace (S25), Histrace (S25), CoChaIR (S26), HYPERDOCSY (S38), ReqSimile (S171), LGRTL (S198), CQV-UML (S400), TiQi (S651), REVERE (S717), LiMonE (S723), ESPRET (S792), COCAR (S805), RETRO (S934), WATson (S302)	15	11.54%
Search & Retrieval	RE-SWOT (S174), IntelliReq (S602), ReqWiki (S711), iMapper (S784), PriF (S802), WIKINA (S686)	6	4.62%
Total		130	100%

Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J. Letsholo, Muideen A. Ajagbe, Erol-Valeriu Chioasca, and Riza T. Batista-Navarro. Natural Language Processing (NLP) for Requirements Engineering: A Systematic Mapping Study. ACM Computing Surveys 54:3, 2022

@2023 Fabiano Dalpiaz

Classification research in NLP4RE

Tool Type	Tool Name (Study ID)	No. Tools	Percent
Modeling	OICSI (S678), NL-OOPS (S553), EA-Miner (S499), CM-Builder (S343), Circe (S34), LIDA (S623), NIBA Toolset (S272), RETNA (S108), aToucan (S909), DBDT (S31), Cico (S34), NL2UMLviaSBVR (S70), RADD-NLI (S121), SUGAR (S190), GRACE (S208), AREMCD (S219), RUCM (S227), RSLingo (S266), Zen-ReqConfig (S482), TREx (S496), NAPLES (S499), GeNLangUML (S551), ConstraintSoup (S600), C&L (S707), AnModeler (S799), SBEAVER (S813), KCMP Dynamisch (S272), Xtext (S20), Kheops (S35), Visual Narrator (S683), ProcGap (S800), FeatureX (S772), CMT & FDE (S261), VoiceToModel (S765)	34	26.15%
Detection	ARM (S861), SREE (S812), RQA (S903), AnaCon (S41), REGICE (S55), NARCIA (S56), LELIE (S75), SRRDirector (S86), MIA (S114), KROSA (S178), NAI (S226), QuARS (S232), CAR (S252), CARL (S298), RAVEN (S303), ReqSAC (S370), RAT (S376), MaramaAIC (S395), RESI (S432), RECAA (S447), DeNom (S448), RETA (S450), AQUSA (S501), Dowser (S644), QAMiner (S661), LeCA (S701), S-HTC (S258), CNLP(S464), Pragmatic Ambiguity Detector (S256), ReqAligner (S663), REAssistant (S662)	31	23.85%
Extraction	findphrases (S13), AbstFinder (S307), FENL (S71), NAT2TESTSCR (S131), NLP-KAOS (S132), SAFE (S385), AUTOANNOTATOR (S433), UCTD (S453), GUEST (S598), Guidance Tool (S688), SpecQua (S743), NAT2TEST (S744), semMet (S777), Test2UseCase (S810), OCLgen (S845), Text2Policy (S872), GaiusT (S888), SNACC (S891), Doc2Spec (S897), ARSENAL (S915), MaTREx tool (S284), ELICA (S2), CHOReOS (S520), GuideGen (S907)	24	18.46%
Classification	ASUM (S129), RUBRIC (S223), WCC (S257), NFR2AC tool (S306), ALERTme (S332), PUMConf (337), FFRE (S341), AUR-BoW (S500), SEMIOS (S550), CRISTAL (S629), CoReq (S672), SD (S674), ACRE (S757), SOVA R-TC (S778), SMAA (S788), CSLabel (S892), HeRA (S718), NFR Locator (S758), SURF (S910), NFRFinder (S647)	20	15.38%
Tracing & Relating	Coparvo (S24), Trustrace (S25), Histrace (S25), CoChaIR (S26), HYPERDOCSY (S38), ReqSimile (S171), LGRTL (S198), CQV-UML (S400), TiQi (S651), REVERE (S717), LiMonE (S723), ESPRET (S792), COCAR (S805), RETRO (S934), WATson (S302)	15	11.54%
Search & Retrieval	RE-SWOT (S174), IntelliReq (S602), ReqWiki (S711), iMapper (S784), PriF (S802), WIKINA (S686)	6	4.62%
Total		130	100%

Classification algorithms are used **not only by** "requirements. classification" tools, but also for tracing, defect detection, ...

Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J. Letsholo, Muideen A. Ajagbe, Erol-Valeriu Chioasca, and Riza T. Batista-Navarro. Natural Language Processing (NLP) for Requirements Engineering: A Systematic Mapping Study. ACM Computing Surveys 54:3, 2022

2. Why this research?

Iris is a requirements analyst who wants to categorize a large collection of requirements from their company

- Iris is a requirements analyst who wants to categorize a large collection of requirements from their company
- Iris comes across the following results from a prominent paper

Test set		ŀ	7		Q				
	Prec	Rec	F1	AUC	Prec	Rec	F1	AUC	
PROMISE train PROMISE test	0.981 0.819	0.984 0.797	0.982 0.822	1.00 0.89	0.985 0.909	1.000 0.891	0.990 0.873	1.00 0.92	

- Iris is a requirements analyst who wants to categorize a large collection of requirements from their company
- Iris comes across the following results from a prominent paper

Test set	F				Q				
	Prec	Rec	F1	AUC	Prec	Rec	F1	AUC	
PROMISE train PROMISE test	0.981 0.819	0.984 0.797	$\begin{array}{c} 0.982\\ 0.822 \end{array}$	1.00 0.89	0.985 0.909	1.000 0.891	0.990 0.873	1.00 0.92	

Can Iris trust that similar performance will be obtained on the company's dataset?

Credible research? Under certain assumptions

Fabiano Dalpiaz, Davide Dell'Anna, Fatma Basak Aydemir, Sercan Çevikol: Requirements Classification with Interpretable Machine Learning and Dependency Parsing. RE 2019: 142-152

Credible research? Under certain assumptions

Does the dataset resemble PROMISE NFR?

- Maybe the result can be transferred
- X Iris may need to re-train the classifier, perhaps by labeling hundreds of reqs.

Fabiano Dalpiaz, Davide Dell'Anna, Fatma Basak Aydemir, Sercan Çevikol: Requirements Classification with Interpretable Machine Learning and Dependency Parsing. RE 2019: 142-152

Research goal: toward credible results in ML4SE

We aim to provide researchers with a framework that enables and fosters publishing (more) credible results

Research goal: toward credible results in ML4SE

- We aim to provide researchers with a framework that enables and fosters publishing (more) credible results
- ECSER pipeline: Evaluating Classifiers in Software Engineering Research

• Bottom line: we do not want to blame researchers!

• Our team made and still makes mistakes when reporting results

• Bottom line: we do not want to blame researchers!

• Our team made and still makes mistakes when reporting results

So, why ECSER?

> ML libraries, code snippets, ChatGPT make ML accessible to non-experts

• Bottom line: we do not want to blame researchers!

• Our team made and still makes mistakes when reporting results

So, why ECSER?

- ML libraries, code snippets, ChatGPT make ML accessible to non-experts
- Performance metrics are often chosen based on previous work

• Bottom line: we do not want to blame researchers!

• Our team made and still makes mistakes when reporting results

So, why ECSER?

- ML libraries, code snippets, ChatGPT make ML accessible to non-experts
- Performance metrics are often chosen based on previous work
- Statistical analysis on multiple datasets is still rare

3. Introducing ECSER

ECSER: an overview

ECSER focuses on Treatment Validation

- Treatment = a classifier
- Two macro phases
- Iterative, as typical in ML

ECSER: an overview

ECSER focuses on Treatment Validation

- Treatment = a classifier
- Two macro phases
- Iterative, as typical in ML
- Treatment design is outside the scope of ECSER
 - Dataset selection & curation
 - Feature engineering
 - Algorithms selection

ECSER's highlight #1: data and models

- In SE, data originates from different projects
- p-fold cross-validation extends k-fold cross-validation with per-project splits (as opposed to random splits)

- In SE, data originates from different projects
- p-fold cross-validation extends k-fold cross-validation with per-project splits (as opposed to random splits)
 - I. Given a set P of projects, take a subset $S \subset P$ to train the classifier
 - 2. Test the classifier on the remaining $P \setminus S$

- In SE, data originates from different projects
- p-fold cross-validation extends k-fold cross-validation with per-project splits (as opposed to random splits)
 - I. Given a set P of projects, take a subset $S \subset P$ to train the classifier
 - 2. Test the classifier on the remaining $P \setminus S$
 - 3. Take another subset S' of the same size of S
 - 4. Train the classifier on S'

5. ...

- In SE, data originates from different projects
- p-fold cross-validation extends k-fold cross-validation with per-project splits (as opposed to random splits)
 - I. Given a set P of projects, take a subset $S \subset P$ to train the classifier
 - 2. Test the classifier on the remaining $P \setminus S$
 - 3. Take another subset S' of the same size of S
 - 4. Train the classifier on S'

	Test set		ŀ	7	Q				
p-fold generally introduces		Prec	Rec	F1	AUC	Prec	Rec	F1	AUC
more diversity than k-fold	PROMISE train PROMISE test PROMISE k-fold PROMISE p-fold	$\begin{array}{c} 0.981 \\ 0.819 \\ 0.755 \\ 0.749 \end{array}$	$\begin{array}{c} 0.984 \\ 0.797 \\ 0.684 \\ 0.602 \end{array}$	0.982 0.822 0.712 0.663	$\begin{array}{c} 1.00 \\ 0.89 \\ 0.80 \\ 0.78 \end{array}$	0.985 0.909 0.785 0.714	$\begin{array}{c} 1.000 \\ 0.891 \\ 0.867 \\ 0.877 \end{array}$	0.990 0.873 0.822 0.781	$\begin{array}{c} 1.00 \\ 0.92 \\ 0.84 \\ 0.80 \end{array}$

5.

. . .

ECSER's highlight #3: the confusion matrix

Reporting on the confusion matrix provides transparency as it allows to derive all metrics and to easily inspect the results

ECSER's highlight #3: the confusion matrix

Reporting on the confusion matrix provides transparency as it allows to derive all metrics and to easily inspect the results

Metric	Formula
Precision Becall (TPB)	$\frac{TP}{(TP+FP)}$ $\frac{TP}{(TP+FN)}$
Specificity (TNR)	$\frac{TN}{(TN + FP)}$
Accuracy F1-score	(TP+TN)/(TP+TN+FP+FN) 2. (Precision · Becall) / (Precision + Becall)
F_{β} -score	$(1+\beta^2)(Precision \cdot Recall)/((\beta^2 \cdot Precision) + Recall)$

ECSER's highlight #3: the confusion matrix

Reporting on the confusion matrix provides transparency as it allows to derive all metrics and to easily inspect the results

		Gold S	Standard		
	None Fe	ature Sta	ability Per	formance Q	uality
None	67	5	3	3	14
≱ Feature	4	94	1	1	2
Stability	14	8	134	6	20
• Performance	4	5	3	29	19
Quality	28	1	3	7	208

Martijn van Vliet, Eduard C. Groen, Fabiano Dalpiaz, Sjaak Brinkkemper: Identifying and Classifying User Requirements in Online Feedback via Crowdsourcing. REFSQ 2020: 143-159

ECSER's highlight #4: overfitting and degradation

• We suggest two specific metrics to better analyze performance

ECSER's highlight #4: overfitting and degradation

• We suggest two specific metrics to better analyze performance

ECSER's highlight #4: overfitting and degradation

• We suggest two specific metrics to better analyze performance

ECSER's highlight #5: the ROC plot

 The ROC plot can be used to visualize performance across multiple datasets

ECSER's highlight #5: the ROC plot

- The ROC plot can be used to visualize performance across multiple datasets
- ... also, to explore the effect of the discrimination threshold between positives and negatives (not shown here)

ECSER's highlight #6: statistical tests

Which statistical test to use?

Test	Normal?	Same var?	Highlights	Suggested?
2+ Classifiers: Pairwise Co	mpar	risons		
Paired T	•		Sensitive to outliers [21], based on the absolute difference in performance	
Wilcoxon Signed-Rank			Based on ranks difference	•
Sign			Counts of wins, losses, ties. Weaker than Wilcoxon [21]	
Bayesian versions of Wilcoxon or Sign			Less affected by Type I Error. Requires definition of practical equivalence [8]	
3+ Classifiers: Omnibus +	Post-	hoc t	est	
Repeated measures ANOVA	•	•	Post-hoc: Tukey's HSD	
Friedman			Post-hoc: Nemenyi	•

ECSER's highlight #6: statistical tests

- Which statistical test to use?
- Not only p-value. Also, effect size!

2 + Classifiers: Pairwise ComparisonsPaired T•Sensitive to outliers [21], based on the absolute difference in performanceWilcoxon Signed-RankBased on ranks differenceSignCounts of wins, losses, ties. Weaker than Wilcoxon [21]Bayesian versions of Wilcoxon or SignLess affected by Type I Error. Requires definition of practical equivalence [8] $3 + Classifiers: Omnibus + Post-hoc test$ Post-hoc: Tukey's HSD ANOVA	Test	Normal? Same var?	Highlights	Suggested?
Paired T • Sensitive to outliers [21], based on the absolute difference in performance Wilcoxon Signed-Rank Based on ranks difference • Sign Counts of wins, losses, ties. Weaker than Wilcoxon [21] • Bayesian versions of Wilcoxon or Sign Less affected by Type I Error. Requires definition of practical equivalence [8] 3+ Classifiers: Omnibus + Post-hoc test Repeated measures • Post-hoc: Tukey's HSD ANOVA Discharge Negarity	2+ Classifiers: Pairwise Con	n parisons		
Wilcoxon Signed-Rank Based on ranks difference • Sign Counts of wins, losses, ties. Weaker than Wilcoxon [21] Bayesian versions of Wilcoxon or Sign Less affected by Type I Error. Requires definition of practical equivalence [8] 3+ Classifiers: Omnibus + Post-hoc test Repeated measures • Post-hoc: Tukey's HSD ANOVA Driedman Doet here Numeration	Paired T	•	Sensitive to outliers [21], based on the absolute difference in performance	
Sign Counts of wins, losses, ties. Weaker than Wilcoxon [21] Bayesian versions of Bayesian versions of Wilcoxon or Sign Less affected by Type I Error. Requires definition of practical equivalence [8] 3+ Classifiers: Omnibus + Post-hoc test Repeated measures • ANOVA Post-hoc: Tukey's HSD	Wilcoxon Signed-Rank		Based on ranks difference	•
Bayesian versions of Less affected by Type I Error. Requires Wilcoxon or Sign definition of practical equivalence [8] 3+ Classifiers: Omnibus + Post-hoc test Repeated measures • Post-hoc: Tukey's HSD ANOVA Driedman Dest here Negarity	Sign		Counts of wins, losses, ties. Weaker than Wilcoxon [21]	
3+ Classifiers: Omnibus + Post-hoc test Repeated measures • • Post-hoc: Tukey's HSD ANOVA Driedman	Bayesian versions of Wilcoxon or Sign		Less affected by Type I Error. Requires definition of practical equivalence [8]	
Repeated measures • Post-hoc: Tukey's HSD ANOVA	3+ Classifiers: Omnibus + H	Post-hoc t	est	
Det here New wet	Repeated measures ANOVA	• •	Post-hoc: Tukey's HSD	
Friedman Post-noc: Nemenyi •	Friedman		Post-hoc: Nemenyi	•

4. Application to NLP4RE

Classificat	n ASUM (S129), RUBRIC (S223), WCC (S257), NFR2AC tool (S306), ALERTme (S332), PUMConf (337), FFRE	20	15.38%
	(S341), AUR-BoW (S500), SEMIOS (S550), CRISTAL (S629), CoReq (S672), SD (S674), ACRE (S757), SOVA		
	R-TC (S778), SMAA (S788), CSLabel (S892), HeRA (S718), NFR Locator (S758), SURF (S910), NFRFinder		
	(\$647)		

Classifying functional and quality requirements

 Seminal classification problem that aims at identifying NFRs (or qualities) for initial architectural design

Requirements Eng (2007) 12:103–120 DOI 10.1007/s00766-007-0045-1

ORIGINAL ARTICLE

Automated classification of non-functional requirements

Jane Cleland-Huang · Raffaella Settimi · Xuchang Zou · Peter Solc

Received: 3 November 2006/Accepted: 22 February 2007/Published online: 23 March 2007 \circledcirc Springer-Verlag London Limited 2007

Abstract This paper describes a technique for automating the detection and classification of non-functional requirements related to properties such as security, performance, and usability. Early detection of non-functional requirements enables them to be incorporated into the initial architectural design instead of being refactored in at a later date. The approach is used to detect and classify stakeholders' quality concerns across requirements speciis useful for supporting an analyst in the manually discovering NFRs, and furt to quickly analyse large and complex (search for NFRs.

Keywords Non-functional requirem Quality requirements · Classification

Classifying functional and quality requirements

- Seminal classification problem that aims at identifying NFRs (or qualities) for initial architectural design
- Dozens of tools in the literature
 - Keyword based, ML & DL classifiers, zero- and few-shot learning...

Requirements Eng (2007) 12:103–120 DOI 10.1007/s00766-007-0045-1

ORIGINAL ARTICLE

Automated classification of non-functional requirements

Jane Cleland-Huang · Raffaella Settimi · Xuchang Zou · Peter Solc

Received: 3 November 2006/Accepted: 22 February 2007/Published online: 23 March 2007 $\ensuremath{\mathbb{C}}$ Springer-Verlag London Limited 2007

Abstract This paper describes a technique for automating the detection and classification of non-functional requirements related to properties such as security, performance, and usability. Early detection of non-functional requirements enables them to be incorporated into the initial architectural design instead of being refactored in at a later date. The approach is used to detect and classify stakeholders' quality concerns across requirements speciis useful for supporting an analyst in the manually discovering NFRs, and furt to quickly analyse large and complex (search for NFRs.

Keywords Non-functional requirem Quality requirements · Classification

Classifying functional and quality requirements

- Seminal classification problem that aims at identifying NFRs (or qualities) for initial architectural design
- Dozens of tools in the literature
 - Keyword based, ML & DL classifiers, zero- and few-shot learning...
 - Often using the PROMISE NFR dataset

Requirements Eng (2007) 12:103–120 DOI 10.1007/s00766-007-0045-1

ORIGINAL ARTICLE

Automated classification of non-functional requirements

Jane Cleland-Huang · Raffaella Settimi · Xuchang Zou · Peter Solc

Received: 3 November 2006/Accepted: 22 February 2007/Published online: 23 March 2007 \circledcirc Springer-Verlag London Limited 2007

Abstract This paper describes a technique for automating the detection and classification of non-functional requirements related to properties such as security, performance, and usability. Early detection of non-functional requirements enables them to be incorporated into the initial architectural design instead of being refactored in at a later date. The approach is used to detect and classify stakeholders' quality concerns across requirements speciis useful for supporting an analyst in the manually discovering NFRs, and furt to quickly analyse large and complex (search for NFRs.

Keywords Non-functional requirem Quality requirements · Classification

Study design (prior to ECSER)

	Data set	Public	New	Size	F	Q	Data set	Public	New	Size	\mathbf{F}	Q
(Treatment Design	Dronology	\checkmark		97	94	28	OAppT		\checkmark	140	84	53
	DUAP	\checkmark	\checkmark	148	138	110	PROMISE NFR	\checkmark		625	310	382
Dataset selection	ERec mgmt	\checkmark	\checkmark	228	163	149	RepReq		\checkmark	99	40	47
	\mathbf{ESA}			236	91	211	ReqView	\checkmark		87	75	32
	Helpdesk			172	143	51	Streaming	\checkmark	\checkmark	291	135	233
Feature	Leeds Library	\checkmark		85	44	61	User mgmt			138	126	25
enginering	NFR-Examples	\checkmark	\checkmark	130	15	117	WASP	\checkmark		62	55	19
	Totals									2538	1513	1518
Algorithms selection												

Study design (prior to ECSER)

	Data set	Public	New	Size	F	Q	Data set	Public	New	Size	F	Q
(Treatment Design	Dronology	\checkmark		97	94	28	OAppT		\checkmark	140	84	53
	DUAP	\checkmark	\checkmark	148	138	110	PROMISE NFR	\checkmark		625	310	382
Dataset selection	ERec mgmt	\checkmark	\checkmark	228	163	149	RepReq		\checkmark	99	40	47
& curation	ESA			236	91	211	ReqView	\checkmark		87	75	32
	Helpdesk			172	143	51	Streaming	\checkmark	\checkmark	291	135	233
Feature	Leeds Library	\checkmark		85	44	61	User mgmt			138	126	25
enginering	NFR-Examples	\checkmark	\checkmark	130	15	117	WASP	\checkmark		62	55	19
	Totals									2538	1513	1518
Algorithms selection												
	Classifier	Year]	ML alg	orithm	I	Distinctive characte	ristic	S			
	km500 [50] ling17 [18] norbert [39]	2017 2019 2020	T	SV SV ransfer	M M learnir	5 1 1g V	00 lexical and synt 7 linguistic feature Vord embedding (m	actic s (Se nax s	al fea ntenc eq. le	tures (V ce-level) ength 12	Word-le [.] 8), 10 e	vel) pochs

S1. Evaluation method and data splitting

Most of the literature uses PROMISE NFR

- 625 requirements that pertain to 15 student projects
- Generally, the studies only perform validation, no testing
- We define two classifiers: *isFunctional* and *isQuality*

S1. Evaluation method and data splitting

Most of the literature uses PROMISE NFR

- 625 requirements that pertain to 15 student projects
- Generally, the studies only perform validation, no testing
- We define two classifiers: *isFunctional* and *isQuality*

We use the holdout method

- Training on 12 datasets, testing on the remaining one (repeat 13 times)
- No hyper-parameter tuning (validation, S3-S4)

S2 & S5. Training and testing the model

Training is performed on PROMISE NFR

In line with the literature

Data set	Public	New	Size	\mathbf{F}	\mathbf{Q}	Data set	Public	New	Size	F	Q
Dronology	\checkmark		97	94	28	OAppT		\checkmark	140	84	53
DUAP	\checkmark	\checkmark	148	138	110	PROMISE NFR	\checkmark		625	310	382
ERec mgmt	\checkmark	\checkmark	228	163	149	RepReq		\checkmark	99	40	47
\mathbf{ESA}			236	91	211	ReqView	\checkmark		87	75	32
Helpdesk			172	143	51	Streaming	\checkmark	\checkmark	291	135	233
Leeds Library	\checkmark		85	44	61	User mgmt			138	126	25
NFR-Examples	\checkmark	\checkmark	130	15	117	WASP	\checkmark		62	55	19
Totals									2538	1513	1518

S2 & S5. Training and testing the model

- Training is performed on PROMISE NFR
 - In line with the literature
- Testing is performed, as just said, according to the holdout method

Data set	Public	New	Size	\mathbf{F}	Q	Data set	Public	New	Size	F	Q
Dronology	\checkmark		97	94	28	ОАррТ		\checkmark	140	84	53
DUAP	\checkmark	\checkmark	148	138	110	PROMISE NFR	\checkmark		625	310	382
ERec mgmt	\checkmark	\checkmark	228	163	149	RepReq		\checkmark	99	40	47
ESA			236	91	211	ReqView	\checkmark		87	75	32
Helpdesk			172	143	51	Streaming	\checkmark	\checkmark	291	135	233
Leeds Library	\checkmark		85	44	61	User mgmt			138	126	25
NFR-Examples	\checkmark	\checkmark	130	15	117	WASP	\checkmark		62	55	19
Totals									2538	1513	1518

S6. Reporting the confusion matrix

This is simply a presentation of the raw results...

			is	F			is	$_{i}Q$	
Data set	Classifier	TP	\mathbf{FP}	TN	FN	TP	\mathbf{FP}	TN	\mathbf{FN}
Training (PROMISE NFR)	ling17 km500 norbert	$229 \\ 306 \\ 301$	$\begin{array}{c} 83\\6\\10\end{array}$	$232 \\ 309 \\ 305$	$81\\4\\9$	$315 \\ 382 \\ 382$	$\begin{array}{c} 60 \\ 5 \\ 27 \end{array}$	$ \begin{array}{r} 183 \\ 238 \\ 216 \end{array} $	$\begin{array}{c} 67\\0\\0\end{array}$
Test (cumulative)	ling17 km500 norbert	$ \begin{array}{r} 1009 \\ 655 \\ 940 \end{array} $	$321 \\ 185 \\ 159$	$365 \\ 501 \\ 527$	$194 \\ 548 \\ 263$	673 806 998	$258 \\ 377 \\ 362$	$495 \\ 376 \\ 391$	463 330 138

S6. Reporting the confusion matrix

This is simply a presentation of the raw results...

			is	F			is	Q	
Data set	Classifier	TP	\mathbf{FP}	TN	\mathbf{FN}	TP	\mathbf{FP}	TN	\mathbf{FN}
Training (PROMISE NFR)	ling17 km500 norbert	229 306 301	$83 \\ 6 \\ 10$	$232 \\ 309 \\ 305$	81 4 9	$315 \\ 382 \\ 382$	$\begin{array}{c} 60 \\ 5 \\ 27 \end{array}$	$ \begin{array}{r} 183 \\ 238 \\ 216 \end{array} $	$\begin{array}{c} 67\\0\\0\end{array}$
Test (cumulative)	ling17 km500 norbert	1009 655 940	$321 \\ 185 \\ 159$	$365 \\ 501 \\ 527$	194 548 263	673 806 998	$258 \\ 377 \\ 362$	$495 \\ 376 \\ 391$	463 330 138

But some aspects already stand out!

S7-S8. Performance and overfitting

► For simplicity, let's examine F₁ here

Task	Classifier	Training	Test	(Test - Training)
			F ₁	
isF	ling17 km500 norbert	$0.74 \\ 0.98 \\ 0.97$	0.75 ± 0.11 0.61 ± 0.09 0.79 ± 0.09	$\begin{array}{c} 0.01 \pm 0.11 \\ -0.38 \pm 0.09 \\ -0.18 \pm 0.09 \end{array}$
isQ	ling17 km500 norbert	0.80 0.99 0.96	0.62 ± 0.09 0.60 ± 0.12 0.71 ± 0.13	-0.18 ± 0.09 -0.39 ± 0.12 -0.25 ± 0.13

S7-S8. Performance and overfitting

► For simplicity, let's examine F₁ here

Task	Classifier	Training	Test	Overfitting (Test - Training)			
F_1							
isF	ling17 km500 norbert	$0.74 \\ 0.98 \\ 0.97$	0.75 ± 0.11 0.61 ± 0.09 0.79 ± 0.09	$\begin{array}{c} 0.01 \pm 0.11 \\ -0.38 \pm 0.09 \\ -0.18 \pm 0.09 \end{array}$			
isQ	ling17 km500 norbert	0.80 0.99 0.96	0.62 ± 0.09 0.60 ± 0.12 0.71 ± 0.13	$\begin{array}{c} -0.18 \pm 0.09 \\ -0.39 \pm 0.12 \\ -0.25 \pm 0.13 \end{array}$			

Who's the winner?

S7-S8. Performance and overfitting

▶ For simplicity, let's examine F₁ here

Task	Classifier	Training	Test	Overfitting (Test - Training)			
$\mathbf{F_1}$							
isF	ling17 km500 norbert	$0.74 \\ 0.98 \\ 0.97$	0.75 ± 0.11 0.61 ± 0.09 0.79 ± 0.09	$\begin{array}{c} 0.01 \pm 0.11 \\ -0.38 \pm 0.09 \\ -0.18 \pm 0.09 \end{array}$			
isQ	ling17 km500 norbert	$0.80 \\ 0.99 \\ 0.96$	0.62 ± 0.09 0.60 ± 0.12 0.71 ± 0.13	-0.18 ± 0.09 -0.39 ± 0.12 -0.25 ± 0.13			

Who's the winner?

- km500 fits best the training set
- norbert has the best performance on the test set
- ling I 7 has the smallest overfitting

S9. ROC Plot (for *isFunctional*)

- norbert is closer to the ROC heaven (top-left corner) for many datasets
- ling I 7 tends to have more false positives
- km500 has more false negatives

S9. ROC Plots (isF and isQ)

Worse performance for the isQ case (the more interesting class!)

S10. Statistical tests

Is one of these classifiers significantly better?

The results are mixed

Omnibus			Post-Hoc/Cohen's d (magnitude) ling17 vs km500 ling17 vs norbert km500 vs norbert		
$i_{S}F$	$\begin{array}{c} {\rm Prec} \\ {\rm Rec} \\ {\rm F}_1 \end{array}$	$p^{f} = 0.002^{**}$ $p^{a} = 0.0^{**}$ $p^{a} = 0.0^{**}$	0.059 (none) 2.152 (large) 1.39 (large)	$\begin{array}{c} 0.37 \; ({\rm small}) \\ 0.236 \; ({\rm small}) \\ 0.43 \; ({\rm small}) \end{array}$	0.314 (small) 1.528 (large) 1.989 (large)
isQ	$\begin{array}{c} {\rm Prec} \\ {\rm Rec} \\ {\rm F}_1 \end{array}$	$p^{a} = 0.066$ $p^{f} = 0.0^{**}$ $p^{a} = 0.014^{*}$	0.683 (medium) 0.134 (none)	1.659 (large) 0.778 (medium)	$\begin{array}{c} 0.977 \ ({ m large}) \\ 0.807 \ ({ m large}) \end{array}$

S10. Statistical tests

Is one of these classifiers significantly better?

- The results are mixed
 - > Yes, for *km500* vs. *norbert* in the isFunctional case

	Omnibus Post-Hoc/Cohen's d (magnitude)			nitude)	
			ling17 vs km500	ling17 vs norbert	km500 vs norbert
isF	$\begin{array}{c} {\rm Prec} \\ {\rm Rec} \\ {\rm F}_1 \end{array}$	$p^{f} = 0.002^{**}$ $p^{a} = 0.0^{**}$ $p^{a} = 0.0^{**}$	0.059 (none) 2.152 (large) 1.39 (large)	0.37 (small) 0.236 (small) 0.43 (small)	0.314 (small) 1.528 (large) 1.989 (large)
isQ	$\begin{array}{c} {\rm Prec} \\ {\rm Rec} \\ {\rm F}_1 \end{array}$	$p^{a} = 0.066$ $p^{f} = 0.0^{**}$ $p^{a} = 0.014^{*}$	0.683 (medium) 0.134 (none)	1.659 (large) 0.778 (medium)	$\begin{array}{c} 0.977 \ { m (large)} \\ 0.807 \ { m (large)} \end{array}$

S10. Statistical tests

Is one of these classifiers significantly better?

- The results are mixed
 - Yes, for *km500* vs. *norbert* in the isFunctional case
 - Almost never for isQuality (only recall when comparing ling I 7 and norbert)

		Omnibus	Post-Hoc/Cohen's d (magnitude)		
			ling17 vs $km500$	ling 17 vs $norbert$	km500 vs $norbert$
isF	$\begin{array}{c} {\rm Prec} \\ {\rm Rec} \\ {\rm F}_1 \end{array}$	$p^{f} = 0.002^{**}$ $p^{a} = 0.0^{**}$ $p^{a} = 0.0^{**}$	0.059 (none) 2.152 (large) 1.39 (large)	0.37 (small) 0.236 (small) 0.43 (small)	0.314 (small) 1.528 (large) 1.989 (large)
isQ	$\begin{array}{c} {\rm Prec} \\ {\rm Rec} \\ {\rm F}_1 \end{array}$	$p^{a} = 0.066$ $p^{f} = 0.0^{**}$ $p^{a} = 0.014^{*}$	0.683 (medium) 0.134 (none)	1.659 (large) 0.778 (medium)	$\begin{array}{c} 0.977 \; ({ m large}) \\ 0.807 \; ({ m large}) \end{array}$

In summary

- We confirm that *norbert* outperforms both *ling17* and *km500* on unseen data
 - But hardly in a statistical sense (could be due to insufficient data points)

In summary

- We confirm that *norbert* outperforms both *ling17* and *km500* on unseen data
 - But hardly in a statistical sense (could be due to insufficient data points)
- The "losers" still have good properties:
 - ling I 7 has the smallest overfitting
 - km500 fits best the training data

In summary

- We confirm that *norbert* outperforms both *ling17* and *km500* on unseen data
 - But hardly in a statistical sense (could be due to insufficient data points)
- The "losers" still have good properties:
 - ling I 7 has the smallest overfitting
 - km500 fits best the training data
- For norbert, the original paper showed equivalent performance for isQ and isF. This is not the case in our experiments on the test sets.

5. The way ahead

A second case on flaky tests

Flaky tests are tests with non-deterministic outcomes on the same code

Alshammari, Abdulrahman, Christopher Morris, Michael Hilton, and Jonathan Bell. *Flakeflagger: Predicting flakiness without rerunning tests*. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1572-1584. IEEE, 2021.

A second case on flaky tests

Flaky tests are tests with non-deterministic outcomes on the same code

- We took three approaches from the literature
 - **FF** (FlakeFlagger): an approach based on machine learning
 - Voc: a keyword-based approach to determine flakiness
 - VocFF: a combination of the previous two

Alshammari, Abdulrahman, Christopher Morris, Michael Hilton, and Jonathan Bell. *Flakeflagger: Predicting flakiness without rerunning tests*. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1572-1584. IEEE, 2021.

A second case on flaky tests

Flaky tests are tests with non-deterministic outcomes on the same code

- We took three approaches from the literature
 - **FF** (FlakeFlagger): an approach based on machine learning
 - Voc: a keyword-based approach to determine flakiness
 - VocFF: a combination of the previous two
- Previous results showed that FF and VocFF outperform Voc
 - They reported performance based on cross-validation (no test set)

Alshammari, Abdulrahman, Christopher Morris, Michael Hilton, and Jonathan Bell. *Flakeflagger: Predicting flakiness without rerunning tests*. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1572-1584. IEEE, 2021.
How did we create a test set?

- We start from their dataset (22 projects)
- We order the projects by # of flaky tests
- We alternatively assign the projects with more positives to train and test set

Project	Tests	Flaky	Data sp	litting
_		_	Train set	Test set
spring-boot	2,108	160	✓	
hbase	431	145		\checkmark
alluxio	187	116	\checkmark	
okhttp	810	100		\checkmark
ambari	324	52	\checkmark	
hector	142	33		\checkmark
activiti	2,043	32	\checkmark	
java-websocket	145	23		\checkmark
wildfly	1,023	23	\checkmark	
httpcore	712	22		\checkmark
logback	805	22	\checkmark	
incubator-dubbo	2,174	19		\checkmark
http-request	163	18	\checkmark	
wro4j	1,135	16		\checkmark
orbit	86	7	\checkmark	
undertow	183	7	\checkmark	
achilles	1,317	4	\checkmark	
elastic-job-lite	558	3	\checkmark	
zxing	345	2	\checkmark	
assertj-core	6,261	1	\checkmark	
handlebars.java	420	1	\checkmark	
ninja	307	1	\checkmark	
commons-exec	55	0	\checkmark	
jimfs	212	0	\checkmark	
Train set total	16,397	449		
Test set total	$5,\!549$	358		

Results, quick overview

Training and validation as in the original paper, but...

	Classifier	Precision	Recall	
Training	FF	1.00	1.00	
	Voc	0.13	0.89	
	VocFF	1.00	1.00	
Validation	FF	0.71 ± 0.05	0.78 ± 0.07	$0.74~\pm$
	Voc	0.12 ± 0.02	0.77 ± 0.08	$0.21 \pm$
	VocFF	0.75 ± 0.04	0.79 ± 0.06	$0.77 \pm$
Tests	FF	0.09 ± 0.19	0.05 ± 0.07	$0.03 \pm$
	Voc	0.15 ± 0.17	0.34 ± 0.18	$0.16 \pm$
	VocFF	0.12 ± 0.23	0.05 ± 0.06	$0.06 \pm$

Results, quick overview

- Training and validation as in the original paper, but...
- Performance on the test set changes drastically: contradictory results
 - Voc is best when applied on unseen data

	Classifier	Precision	Recall	
Training	FF	1.00	1.00	1
	Voc	0.13	0.89	(
	VocFF	1.00	1.00	1
Validation	FF	0.71 ± 0.05	0.78 ± 0.07	0.74 ± 0
	Voc	0.12 ± 0.02	0.77 ± 0.08	0.21 ± 0
	VocFF	0.75 ± 0.04	0.79 ± 0.06	0.77 ± 0
Tests	FF	0.09 ± 0.19	0.05 ± 0.07	0.03 ± 0
	Voc	0.15 ± 0.17	0.34 ± 0.18	0.16 ± 0.00
	VocFF	0.12 ± 0.23	0.05 ± 0.06	0.06 ± 0.01

Use multiple datasets, unless
(i) data labeling is practically possible
(ii) you can prove that real-world datasets are homogeneous

Project	Tests	Flaky	Data splitting	
-		-	Train set	Test set
spring-boot	2,108	160	✓	
hbase	431	145		\checkmark
alluxio	187	116	\checkmark	
okhttp	810	100		\checkmark
ambari	324	52	\checkmark	
hector	142	33		\checkmark
activiti	2,043	32	\checkmark	
java-websocket	145	23		\checkmark
wildfly	1,023	23	\checkmark	
httpcore	712	22		\checkmark
logback	805	22	\checkmark	
incubator-dubbo	2,174	19		\checkmark
http-request	163	18	\checkmark	
wro4j	1,135	16		\checkmark
orbit	86	7	\checkmark	
undertow	183	7	\checkmark	
achilles	1,317	4	\checkmark	
elastic-job-lite	558	3	\checkmark	
zxing	345	2	\checkmark	
assertj-core	6,261	1	\checkmark	
handlebars.java	420	1	\checkmark	
ninja	307	1	\checkmark	
commons-exec	55	0	\checkmark	
jimfs	212	0	\checkmark	
Train set total	16,397	449		
Test set total	5,549	358		

Evolve ECSER and the

research methods in the field

A few directions

- What happens with zero-shot learning where training is not necessary
- What are the "right" statistical tests?
- What are the most suitable metrics?
- Beyond classification other ML tasks

Thank you for listening! Questions?

RE-Lab's research illustrated, 2018

