I REREREEERRERE]
S RRENEEERARET
ZIIIIITITIMY

SRS ERRRERE]

080

A |

Foto: Gregor Hibl

Disclaimer and Acknowledgements

Machine Learning: Foundations, Methodologies,
and Applications

Alessio Ferrari
Gouri Deshpande

Parts of the talk are inspired by the chapter “Using Large Language
Models for Natural Language Processing Tasks in Requirements

Engineering: A Systematic Guideline” Natural Language Processing
from the upcoming book for Requirements Engineering

“Natural Language Processing for Requirements Engineering”

Acknowledgements

J. Fischbach C. Arora S. Abualhaija S
7} Springer
A. Ferrari F. Dalpiaz G. Deshpande

(PN UNIVERSITY
—16 — 5§ OF COLOGNE

My own story with NLP, ML, and LLMs for RE

® 2016: CNN for Requirements Classification
® 2017: Understanding DNN Classifiers
® 2018: Human-in the-loop evaluations

® 2019: Explainable tools

® Since 2020: Classification and Extraction with BERT et al.

® Conditionals

® Kano model factors
® Explainability needs
® Test case creation

® Since 2023: Exploring the potentials of Generative LLMs

UNIVERSITY
5/ OF COLOGNE

— | .
The - :i h
function r - ‘-«.__.]\.-"—-{:)
" —— -
=|9 ISl _ : ———r FEQU ST

..... | imformation
be | - e
11— "
L - -
T I
['..
|
[{2} {3} 4y (k1] 1]
winnl emheddine filbers convnlution l-max-maline concasenation fully cosnecied bver

requirement the duration until the switch is recognized as hanging must be =
configurable parameter .
information the component conditionally drives an external fan . this fan is

B for active ventilation of the headlight .

SM'—"F%I'AA vu-{!mﬂ%w then € x'rﬁ
v
(mwrmmm)

‘; Aoayw«om' Tokonzer

/ Y ¥ ¥V V¥V
CLS ¥ mark A el SEP PAD PAD
o2l o) of o o Jvelul Lo
C BERT)

non-Caussl ——p X

The times when | got really excited

. STl [l
Generating data : ,nzm-::n

(Stacked) RBMs can be used to generate

® 2016: My first experience with end-to-end ML Kiaat farme of dsts. rﬂﬂ
e 2017: Keynote by Vincenzo Gervasi at AIRE’17 (e BN YN N
e the network is trained on a number of untagged instances
® 2020: BERT -> Data problem seemed to be solved this sets weights on the links
e then, random values are set on the nodes, the network is run until
e 2023: Release of chatGPT stabilization, and output is read on the “input” nodes

e This is sometimes referred as machines dreaming

In RE applications:

e What if | reverse the FR/NFR classifier
and ask to generate a requirement
(given the class) instead?

Creativity-enhancing techniques

e Once we have trained a network in an
unsupervised fashion, what can we
learn from the synthesized stable
states?

e Let's feed requirements at a RBM. It wil
implicitly classify them according to
“invented” classes

) ?
UNIVERSITY Will these classes mirror the IEEE Stds? 4
5/ OF COLOGNE

https://aire-ws.github.io/aire17/resources/Vincenzo_Gervasi-Of Forms_and_Structures.pdf

01

Preliminaries:
Decoder-only LLMs

Output

The Transformer Architecture Probabiies_Decoder

| Softmax |

| Linear |

d)
. . Add & Norm
®* Encoder-decoder architecture (e.g., the T5 family) [=t I
Encoder Foreoard
* Translative* LLMs 7
—
® Translate input into corresponding output text rr—'l s]‘ (Add & Norm Je=
T Multi-Head
* Encoder-only architecture (e.g., the BERT family) eea }A“e;“"”) N
* Predictive LLMs B — e ™
_ o Nx | —(CAdd & Norm) ——
® Predicts existing patterns or outcomes T Mot Lo
. . Attention Attention
® Decoder-only architecture (e.g., the GPT family)) 7
e Generative LLM A dlh /
enerative > Positional @ @ ¢ Positional
* Generates text based on a given context (prompt) Encoding Encoding
Input Output
Embedding Embedding
*‘ UNIVERSITY Inputs Outputs 6
&5/ OF CoLoohE (shifted right)

* Categor;?ﬁvented by me

Prompting

® A prompt may include

Instructions: a specific task or instruction you want the model to perform

Context: external information or additional context that can steer the model to better responses

Input Data: the input or question that we are interested in finding a response for

Output Indicator: the type or format of the output.

® Brings the decoder into a desired state (the context)

®* A new input paradigm
® No need to ,,model” the problem by preprocessing input data

® |nstead, stating the problem in natural language

(PR UNIVERSITY
WLIEY oF coLoaNE
V{a!@!;y

02

Generative LLMs for RE

Generative LLMs can replace Predictive LLMs

oo q | Embedding ,
Predictive LLM: Input Encoder-only Repurposing / Output
LLM Fine-Tuning
Generative LLM: Prompt Decoder-only LLM » Output

PR UNIVERSITY
"Ny, OF COLOGNE
o2

Example: Automated Traceability

Below are artifacts from the same software system. Is there a traceability link between (1) and
(2)? Answer “yes” or “no”.

(1) The DPU-TMALI shall utilize SCM_DCI_SR, along with ERRNO provided by DPU-DCI to decode
errors and place them on an error queue for DPU-CCM.

(2) Error Collection and Reporting The ccmErrEng() function tracks the last error reported and its
frequency of occurrence. Once an error code has been reported it becomes the previously
reported error code maintained by ccmErrEng(). [...]

37% precision and 84% recall without any training

O ERS T Rodriguez, A.D., Dearstyne, K.R., Cleland-Huang, J.: Prompts matter: Insights and strategies for prompt
g engineering in automated software traceability. In: AIRE‘23

10

Explanations and Rationales

Below are artifacts from the same software system. Is there a traceability link between (1) and

(2)?

(1) The DPU-TMALI shall utilize SCM_DCI_SR, along with ERRNO provided by DPU-DCI to decode

errors and place them on an error queue for DPU-CCM.

(2) Error Collection and Reporting The ccmErrEng() function tracks the last error reported and its
frequency of occurrence. Once an error code has been reported it becomes the previously
reported error code maintained by ccmErrEng(). [...]

UNIVERSITY
OF COLOGNE

Yes, there is a traceability link between (1) and (2).

(1) mentions that the DPU-TMALI places errors on an error queue for the DPU-
CCM.

(2) describes the error collection and reporting mechanism of the DPU-CCM,
specifically referring to enqueuing errors.

So (2) provides an implementation detail for the error queuing functionality
briefly mentioned in (1). Therefore, there is a traceability link between these
two artifacts in the software system.

11

Starting a Dialog

The explanations is not correct.

(2) does not describe the DPU-CCM but
another component.

How can | change (2) to improve the
traceability?

UNIVERSITY
OF COLOGNE

| apologize for the confusion in my previous response. Based on the
information provided, there is no direct traceability link between (1) and (2) in
terms of specific components or functionalities. (1) describes the error
handling process in the DPU-TMALI component, while (2) describes the error

collection and reporting mechanism in a different component that is not
explicitly mentioned.

Without further context or explicit connections between the components

mentioned in (1) and (2), it is not possible to establish a direct traceability link
between the two artifacts.

To improve traceability between (1) and (2), you can modify (2) to explicitly
mention the relationship with the DPU-CCM component mentioned in (1).

Here's how you can adjust the description:

[...]

12

Challenge: Which Architecture to Choose?

What type of task is it?
(A) Understanding
(B) Generation

(A)

(B)

Is there a large enough, reliable,and
diverse ground truth for the problem?

yes no

TR uNIVERSITY
W) oF coLoGNE
.

Is there a large enough, reliable,and
diverse ground truth for the problem?

no yes

13

Challenge: How to evaluate Generative LLMs?

® Predictive tasks:
® Follow best practices
® |sa generative LLM necessary?

® Does it justify the additional computational effort?

UNIVERSITY
5/ OF COLOGNE

Emnpirical Software Engineering (2023) 283
hitpsyfdel.org/10.1007/510664-022-10243-1

HC)

Evaluating classifiers in SE research: the ECSER pipeline
and two replication studies

Davide Dell'Anna’ = . Fatma Bagsak Aydemir® - Fabiano Dalpiaz®

Accepted: 20 September 2022 /Published online: B Novernber 2022
© The Authoris) 2022

Abstract

Context Automated classifiers, often based on machine learning (ML), are increasingly
used in software engineering (SE) for labelling previously unseen SE data. Rescarchers have
proposed automated classifiers that predict if a code chunk is a clone, if a requirement is
functional or non-functional, if the outcome of a test case is non-deterministic, elc.

Objective The lack of guidelines for applying and reporting classification technigues for
SE research leads to studies in which important research steps may be skipped, key findings
might not be identified and shared, and the readers may find reported results (e.g., precision
or recall above 90%) that are not a credible representation of the performance in operational
contexts. The goal of this paper is to advance MLASE research by proposing rigorous ways
of conducting and reporting research.

Results We introduce the ECSER (Evaluating Classifiers in Software Engineering
Research) pipeline, which includes a series of steps for conducting and evaluating auto-
mated classification research in SE. Then, we conduct two replication studies where we
apply ECSER 1o recent research in requirements engineering and in software testing.

Conclusions In addition 1o demonstrating the applicability of the pipeline, the replication
studies demonstrate ECSER's usefulness: not only do we confirm and strengthen some find-
ings identified by the original authors, but we also discover additional ones, Some of these
findines contradict the original ones.

14

Challenge: How to evaluate Generative LLMs?

® Performance ® Cost
® QOverlap-based (e.g., BLEU, ROUGE, METEOR) ® QOperation cost
® Semantic Similarity (e.g., BERTScore) ® Nr. of tokens

® User ® Ethics
® HilL performance ® Regulation
® Perceived quality ® Harmfulness
® Acceptance ® Hallucination
® Feedback ® Transparency

The humanin the loop becomes even more importantfor evaluating
generative LLMs

|/ }‘ UNIVERSITY
EedLIZN OF COLOGNE
V@!@_’,ﬁ

15

03

RE for Effective Prompting

Prompt Engineering: State of the Art

ChatQGPT Cheat Sheet (Drafting the Parfact Prompt) -

+* Prompt Engineering Guide B Bicoah Bicieiia Coues: Burciias Miaia: FRRRE ester Ve i} ot eirg Ve e St S S fha Seow ¢ (LA son
Promgt Engewening Promot Ergeeerrg
Prompt Btrueture: Potential Expert
s ' —)
" Prompt Engineering Guide i, et et b P ot il R
'kw“‘v—h- sleverd [aptioral teis wd

we) The ariting style b [cotionel: teme of volos |
n.—uu—-a el st e |

optimizing prompts to efficently use Brguage Example « Betrmere Engineer
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT S Prcgt aglstilag dlie ik 66 hatkar e B + ovtipe Ingoee
Wraft M Utens L s tasie farsaat for my Blog On i, shere | * Banbor Voghwisanl Woite)
e e e A b e e e giae te rve Ao tert

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilber, Published as a conference paper at ICLR 2023 g n
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt g oo
Deparmment of Computer Science o Susshrass cnner

Vanderbdt University, Tennessee
Nashville, TN, USA
{jules.white, quchen.fu, george.s hays, michael.sandbom, carlos.olea, henry gilbert, LARGE LANGUAGE MODELS ARE HUMAN-LEVEL

ashraf clnashas, jesse spencer-smith, douglas.c schmidt} @ vanderbilt edu PROMPT ENGINEERS

Abstract—Prompt engincering is an increasingly important LLM by providing specific rules and guideline
skill set moeded 10 converse effectively with large kanguage models comversation with a set of initial rules. In partic Yongchao Zhou'“*, Andrei loan Muresanu”~-*, Ziwen Han'-**, Keiran Paster'~,
(LLMs), such v ChatGPT. Prompts are instructions given 1088 o p oo oo o s rells f Silviu Pitis' ?, Harris Chan' ?, Jimmy Ba'?
LLM o enforce rulus, sotomate procemes, snd envure specific Lo o oo i rtans and what the desired "University of Toronto *Vector Institute *University of Waterloo *Equal contribution

:::""mmu‘x :.-’T "'I : coatent should be. {yczhou, hanziwen, keirp, spitis, hchan, jbaj@ca.toronte.edu

interactions with an LIM. For example, a prompt could specify that {andrei.muresanu)@uwaterloo.ca
e e R S G Bt SR B o i e S e v
Likewise, it could
commen problems when conversing with LLMs. Prompt patterns WIIHIII::“E ! &
are a knowledge tramsfer method analogous to sofltware patterns POV I‘.’, e | :
since they provide reusable solutions to common problens faced m:dw*#mdgfam
:;Mmﬁmw-ww-ﬂ--‘”ﬂw keywords. yn::iucmg M; :::d::;. By oondmmuuonm:ﬂml:ﬂmmm Mew%w)m
paper provides the following contributions to rescarch " . . A displayed impressive capabilitics as gei -purpose computers. However, ormance
— e ¥ e~ g oG Wikl the comtext of depends significantly on the quality of the prompt used to sicer the model, and most effective

ABSTRACT

velopment tasks. First, it provides & framewerk for documenting Prompt engineering is the means by prompts have been handerafted by humans, Iaspired by classical program synthesis and
patterns for structuring prompts 1o solve a range of problems Programmed via prompts. To demonstrate the human approach to prompt engincering, we propose Automatic Prompt Engineer'
so that they can be adapted to different domains. Sccond, it prompt engineering, we provide the following (APE) for automatic instruction generation and selection. In our method, we treat the
presents a catalog of patterns that have been applied successfully Prompt: “From now on, | would like you instruction as the “program,” optimized by searching over a pool of instruction canchdates
10 improve the outpets of LLM conversations. Third, it explains questions to deploy a Python application proposed by an LLM in order to maximize a chosen score function. To evaluate the
how prompts can be bullt from multiple patterns and illustrates APt inf ton 8 quality of the selected instruction, we evaluate the zero-shot performance of another LLM
prompt patterns that benefit from combination with ether prompt W you Shmugh Mfuidtion following the selected instruction. Extensive experiments show that our automatically
allerne. application, create a Python script to generated instructions outperform the prior LLM bascline by a large margin and achieve

better or comparable performance 1o the instructions generated by human annotators on

24724 lastruction Induction tasks and 17/21 curated BIG-Bench tasks. We conduct extensive

UNIVERSITY Qualitative and quantitative analyses 10 explore the performance of APE, We show that 17

OF COLOGNE APE-engincered prompts are able to improve few-shot learning performance (by simply
prepending them to standard in-context leaming prompts), find better zero-shot chain-of-
thought prompts, as well as steer models toward truthfulness and/or informativencss. .

Prompt Engineering from an RE Perspective

Prompts are expressions of requirements!

® Goals of RE [IREB] ® Goals of PromptRE?
® Knowing all relevant requirements ®* Knowing all relevant prompts

® Achieving a consensus among the stakeholders about ® Achieving a consensus among the stakeholders about

these requirements these prompts
® Documenting requirements appropriately ® Documenting prompts appropriately
®* Managing requirements systematically ®* Managing prompts systematically

|/ X‘ UNIVERSITY
EedLIZN OF COLOGNE
V@!@_’,ﬁ

18

Prompt Smells?

We want to develop a game for mobile devices. The game has two players who throw a dice in
each turn. Both players start with 10 points. If the dice shows an even number, the number is
added to the points of the player, if it shows an uneven number, the points are subtracted. If the
points of one player are too low, the game ends and the player loses the game.

Please create code in Python that implements this game.

Certainly! Below is a Python implementation of the game:

[...]

if playerl_points <= 0:
print("Player 1 has lost the game!")
break

[...]

A\ UNIVERSITY 19
)/ OF COLOGNE

RE for and with Prompts

® General

®* What is the role of prompts in the development process? Are they requirements? Intermediate (transitory)
artifacts? High-level code?

® Traceability
® Which prompts have been derived from which requirements?
® |s all prompt content backed up by requirements?
® Prompt Management
® Which (version of a) prompt generated which code?
® Which LLM (version) has been used?
® Prompt documentation

® Are prompts a good representation of requirements?

) UNIVERSITY

I/ OF COLOGNE

H

20

Summary and Take-Home Messages

| apologize for the confusion in my previous response. Based on the
information provided, there is no direct traceability link between (1)
and (2) in terms of specific components or functionalities. (1)
describes the error handling process in the DPU-TMALI component,
while (2) describes the error collection and reporting rmechanism in a
different component that is not explicitly mentioned.

‘Without further context or explicit connections between the
components mentioned in (1) and (2}, it is not possible to establish a
direct traceability link between the two artifacts.

To improve traceability between (1) and (2), you can modify (2) to
explicitly mention the relationship with the DPU-CCM component
mentioned in (1). Here's how you can adjust the description:

[

Explore the new opportunities of generative
LLMs (explanations, dialogs)

m www.linkedin.com/in/prof-andreas-vogelsang

UNIVERSITY
OF COLOGNE

* Performance * Cost
* Overlap-based (e.g., BLEU, ROUGE, METEOR) * Operation cost
¢ Semantic Similarity (e.g., BERTScore) * Nr. of tokens

* User * Ethics
* HiL performance * Regulation
* Perceived quality * Harmfulness
* Acceptance ¢ Hallucination
* Feedback * Transparancy

2 Mangt tpnering e -

Prompt Engineering Guide

A Prompt Pattern Catalog to Eshance Prompt Engincering with ChatGPT

LARGE LANGUAGE MODELS ARE HUMAN-LEVEL s
PROMPT ENGINEERS

AnsTRACT

Mind the evaluation!

E vogelsang@cs.uni-koeln.de

RE for and with prompts is an open
field

21

	Slide 1: Prompting the Future: Integrating Generative LLMs and Requirements Engineering
	Slide 2: Disclaimer and Acknowledgements
	Slide 3: My own story with NLP, ML, and LLMs for RE
	Slide 4: The times when I got really excited
	Slide 5: Preliminaries: Decoder-only LLMs
	Slide 6: The Transformer Architecture
	Slide 7: Prompting
	Slide 8: Generative LLMs for RE
	Slide 9: Generative LLMs can replace Predictive LLMs
	Slide 10: Example: Automated Traceability
	Slide 11: Explanations and Rationales
	Slide 12: Starting a Dialog
	Slide 13: Challenge: Which Architecture to Choose?
	Slide 14: Challenge: How to evaluate Generative LLMs?
	Slide 15: Challenge: How to evaluate Generative LLMs?
	Slide 16: RE for Effective Prompting
	Slide 17: Prompt Engineering: State of the Art
	Slide 18: Prompt Engineering from an RE Perspective
	Slide 19: Prompt Smells?
	Slide 20: RE for and with Prompts
	Slide 21: Summary and Take-Home Messages

