
Fo
to

: G
re

go
r

H
üb

l

PROMPTING THE FUTURE:
INTEGRATING GENERATIVE LLMS AND
REQUIREMENTS ENGINEERING

Andreas Vogelsang, University of Cologne, Germany

08.04.2024NLP4RE‘24, Winterthur, Switzerland

Parts of the talk are inspired by the chapter “Using Large Language
Models for Natural Language Processing Tasks in Requirements
Engineering: A Systematic Guideline”
from the upcoming book
“Natural Language Processing for Requirements Engineering”

Acknowledgements

Disclaimer and Acknowledgements

2

Natural Language Processing
for Requirements Engineering

Alessio Ferrari
Gouri Deshpande

J. Fischbach

A. Ferrari

C. Arora

F. Dalpiaz

S. Abualhaija

G. Deshpande

• 2016: CNN for Requirements Classification

• 2017: Understanding DNN Classifiers

• 2018: Human-in the-loop evaluations

• 2019: Explainable tools

• Since 2020: Classification and Extraction with BERT et al.

• Conditionals

• Kano model factors

• Explainability needs

• Test case creation

• Since 2023: Exploring the potentials of Generative LLMs

My own story with NLP, ML, and LLMs for RE

3

• 2016: My first experience with end-to-end ML

• 2017: Keynote by Vincenzo Gervasi at AIRE’17

• 2020: BERT -> Data problem seemed to be solved

• 2023: Release of chatGPT

The times when I got really excited

4

https://aire-ws.github.io/aire17/resources/Vincenzo_Gervasi-Of_Forms_and_Structures.pdf

Preliminaries:
Decoder-only LLMs

01

The Transformer Architecture

6

• Encoder-decoder architecture (e.g., the T5 family)

• Translative* LLMs

• Translate input into corresponding output text

• Encoder-only architecture (e.g., the BERT family)

• Predictive LLMs

• Predicts existing patterns or outcomes

• Decoder-only architecture (e.g., the GPT family)

• Generative LLMs

• Generates text based on a given context (prompt)

Encoder

Decoder

* Category invented by me

• A prompt may include

• Instructions: a specific task or instruction you want the model to perform

• Context: external information or additional context that can steer the model to better responses

• Input Data: the input or question that we are interested in finding a response for

• Output Indicator: the type or format of the output.

• Brings the decoder into a desired state (the context)

• A new input paradigm

• No need to „model“ the problem by preprocessing input data

• Instead, stating the problem in natural language

Prompting

7

Generative LLMs for RE

02

Generative LLMs can replace Predictive LLMs

Repurposing /
Fine-Tuning

Encoder-only
LLM

Embedding
Input Output

Decoder-only LLMPrompt Output

Predictive LLM:

Generative LLM:

9

Example: Automated Traceability

Below are artifacts from the same software system. Is there a traceability link between (1) and
(2)? Answer “yes” or “no“.

(1) The DPU-TMALI shall utilize SCM_DCI_SR, along with ERRNO provided by DPU-DCI to decode
errors and place them on an error queue for DPU-CCM.

(2) Error Collection and Reporting The ccmErrEnq() function tracks the last error reported and its
frequency of occurrence. Once an error code has been reported it becomes the previously
reported error code maintained by ccmErrEnq(). […]

Yes

Rodriguez, A.D., Dearstyne, K.R., Cleland-Huang, J.: Prompts matter: Insights and strategies for prompt
engineering in automated software traceability. In: AIRE‘23

37% precision and 84% recall without any training

10

Explanations and Rationales

11

Below are artifacts from the same software system. Is there a traceability link between (1) and
(2)?

(1) The DPU-TMALI shall utilize SCM_DCI_SR, along with ERRNO provided by DPU-DCI to decode
errors and place them on an error queue for DPU-CCM.

(2) Error Collection and Reporting The ccmErrEnq() function tracks the last error reported and its
frequency of occurrence. Once an error code has been reported it becomes the previously
reported error code maintained by ccmErrEnq(). […]

Yes, there is a traceability link between (1) and (2).
(1) mentions that the DPU-TMALI places errors on an error queue for the DPU-
CCM.
(2) describes the error collection and reporting mechanism of the DPU-CCM,
specifically referring to enqueuing errors.

So (2) provides an implementation detail for the error queuing functionality
briefly mentioned in (1). Therefore, there is a traceability link between these
two artifacts in the software system.

Starting a Dialog

12

The explanations is not correct.
(2) does not describe the DPU-CCM but
another component.

I apologize for the confusion in my previous response. Based on the
information provided, there is no direct traceability link between (1) and (2) in
terms of specific components or functionalities. (1) describes the error
handling process in the DPU-TMALI component, while (2) describes the error
collection and reporting mechanism in a different component that is not
explicitly mentioned.

Without further context or explicit connections between the components
mentioned in (1) and (2), it is not possible to establish a direct traceability link
between the two artifacts.

How can I change (2) to improve the
traceability?

To improve traceability between (1) and (2), you can modify (2) to explicitly
mention the relationship with the DPU-CCM component mentioned in (1).
Here's how you can adjust the description:
[…]

Challenge: Which Architecture to Choose?

13

What type of task is it?
(A) Understanding

(B) Generation

Is there a large enough, reliable, and
diverse ground truth for the problem?

Is there a large enough, reliable, and
diverse ground truth for the problem?

Try encoder-decoder
model first (e.g., T5)

Try decoder-only model
first (e.g., GPT)

Try encoder-only model
first (e.g., BERT)

yes yesnono

(A) (B)

• Predictive tasks:

• Follow best practices

• Is a generative LLM necessary?

• Does it justify the additional computational effort?

Challenge: How to evaluate Generative LLMs?

14

• Performance

• Overlap-based (e.g., BLEU, ROUGE, METEOR)

• Semantic Similarity (e.g., BERTScore)

• User

• HiL performance

• Perceived quality

• Acceptance

• Feedback

Challenge: How to evaluate Generative LLMs?

15

• Cost

• Operation cost

• Nr. of tokens

• Ethics

• Regulation

• Harmfulness

• Hallucination

• Transparency

The human in the loop becomes even more important for evaluating
generative LLMs

RE for Effective Prompting

03

Prompt Engineering: State of the Art

17

• Goals of RE [IREB]

• Knowing all relevant requirements

• Achieving a consensus among the stakeholders about
these requirements

• Documenting requirements appropriately

• Managing requirements systematically

Prompt Engineering from an RE Perspective

18

• Goals of PromptRE?

• Knowing all relevant prompts

• Achieving a consensus among the stakeholders about
these prompts

• Documenting prompts appropriately

• Managing prompts systematically

Prompts are expressions of requirements!

Prompt Smells?

19

We want to develop a game for mobile devices. The game has two players who throw a dice in
each turn. Both players start with 10 points. If the dice shows an even number, the number is
added to the points of the player, if it shows an uneven number, the points are subtracted. If the
points of one player are too low, the game ends and the player loses the game.

Please create code in Python that implements this game.

Certainly! Below is a Python implementation of the game:
[…]
if player1_points <= 0:

print("Player 1 has lost the game!")
break

[…]

• General

• What is the role of prompts in the development process? Are they requirements? Intermediate (transitory)
artifacts? High-level code?

• Traceability

• Which prompts have been derived from which requirements?

• Is all prompt content backed up by requirements?

• Prompt Management

• Which (version of a) prompt generated which code?

• Which LLM (version) has been used?

• Prompt documentation

• Are prompts a good representation of requirements?

RE for and with Prompts

20

Summary and Take-Home Messages

21

Explore the new opportunities of generative
LLMs (explanations, dialogs)

RE for and with prompts is an open
field

Mind the evaluation!

vogelsang@cs.uni-koeln.de

www.linkedin.com/in/prof-andreas-vogelsang

	Slide 1: Prompting the Future: Integrating Generative LLMs and Requirements Engineering
	Slide 2: Disclaimer and Acknowledgements
	Slide 3: My own story with NLP, ML, and LLMs for RE
	Slide 4: The times when I got really excited
	Slide 5: Preliminaries: Decoder-only LLMs
	Slide 6: The Transformer Architecture
	Slide 7: Prompting
	Slide 8: Generative LLMs for RE
	Slide 9: Generative LLMs can replace Predictive LLMs
	Slide 10: Example: Automated Traceability
	Slide 11: Explanations and Rationales
	Slide 12: Starting a Dialog
	Slide 13: Challenge: Which Architecture to Choose?
	Slide 14: Challenge: How to evaluate Generative LLMs?
	Slide 15: Challenge: How to evaluate Generative LLMs?
	Slide 16: RE for Effective Prompting
	Slide 17: Prompt Engineering: State of the Art
	Slide 18: Prompt Engineering from an RE Perspective
	Slide 19: Prompt Smells?
	Slide 20: RE for and with Prompts
	Slide 21: Summary and Take-Home Messages

