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Parts of the talk are inspired by the chapter “Using Large Language 
Models for Natural Language Processing Tasks in Requirements 
Engineering: A Systematic Guideline” 
from the upcoming book 
“Natural Language Processing for Requirements Engineering”
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• 2016: CNN for Requirements Classification

• 2017: Understanding DNN Classifiers

• 2018: Human-in the-loop evaluations 

• 2019: Explainable tools

• Since 2020: Classification and Extraction with BERT et al.

• Conditionals 

• Kano model factors

• Explainability needs

• Test case creation 

• Since 2023: Exploring the potentials of Generative LLMs

My own story with NLP, ML, and LLMs for RE
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• 2016: My first experience with end-to-end ML

• 2017: Keynote by Vincenzo Gervasi at AIRE’17

• 2020: BERT -> Data problem seemed to be solved

• 2023: Release of chatGPT

The times when I got really excited
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https://aire-ws.github.io/aire17/resources/Vincenzo_Gervasi-Of_Forms_and_Structures.pdf



Preliminaries:
Decoder-only LLMs
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The Transformer Architecture
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• Encoder-decoder architecture (e.g., the T5 family)

• Translative* LLMs

• Translate input into corresponding output text

• Encoder-only architecture (e.g., the BERT family)

• Predictive LLMs

• Predicts existing patterns or outcomes

• Decoder-only architecture (e.g., the GPT family)

• Generative LLMs

• Generates text based on a given context (prompt)

Encoder

Decoder

* Category invented by me



• A prompt may include

• Instructions: a specific task or instruction you want the model to perform

• Context: external information or additional context that can steer the model to better responses

• Input Data: the input or question that we are interested in finding a response for

• Output Indicator: the type or format of the output.

• Brings the decoder into a desired state (the context)

• A new input paradigm 

• No need to „model“ the problem by preprocessing input data

• Instead, stating the problem in natural language

Prompting
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Generative LLMs for RE
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Generative LLMs can replace Predictive LLMs

Repurposing / 
Fine-Tuning

Encoder-only 
LLM

Embedding
Input Output

Decoder-only LLMPrompt Output

Predictive LLM:

Generative LLM:
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Example: Automated Traceability

Below are artifacts from the same software system. Is there a traceability link between (1) and 
(2)? Answer “yes” or “no“.

(1) The DPU-TMALI shall utilize SCM_DCI_SR, along with ERRNO provided by DPU-DCI to decode 
errors and place them on an error queue for DPU-CCM. 

(2) Error Collection and Reporting The ccmErrEnq() function tracks the last error reported and its 
frequency of occurrence. Once an error code has been reported it becomes the previously 
reported error code maintained by ccmErrEnq(). […]

Yes

Rodriguez, A.D., Dearstyne, K.R., Cleland-Huang, J.: Prompts matter: Insights and strategies for prompt 
engineering in automated software traceability. In: AIRE‘23

37% precision and 84% recall without any training
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Explanations and Rationales
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Below are artifacts from the same software system. Is there a traceability link between (1) and 
(2)? 

(1) The DPU-TMALI shall utilize SCM_DCI_SR, along with ERRNO provided by DPU-DCI to decode 
errors and place them on an error queue for DPU-CCM. 

(2) Error Collection and Reporting The ccmErrEnq() function tracks the last error reported and its 
frequency of occurrence. Once an error code has been reported it becomes the previously 
reported error code maintained by ccmErrEnq(). […]

Yes, there is a traceability link between (1) and (2). 
(1) mentions that the DPU-TMALI places errors on an error queue for the DPU-
CCM.
(2) describes the error collection and reporting mechanism of the DPU-CCM, 
specifically referring to enqueuing errors.

So (2) provides an implementation detail for the error queuing functionality 
briefly mentioned in (1). Therefore, there is a traceability link between these 
two artifacts in the software system.



Starting a Dialog
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The explanations is not correct. 
(2) does not describe the DPU-CCM but 
another component.

I apologize for the confusion in my previous response. Based on the 
information provided, there is no direct traceability link between (1) and (2) in 
terms of specific components or functionalities. (1) describes the error 
handling process in the DPU-TMALI component, while (2) describes the error 
collection and reporting mechanism in a different component that is not 
explicitly mentioned.

Without further context or explicit connections between the components 
mentioned in (1) and (2), it is not possible to establish a direct traceability link 
between the two artifacts.

How can I change (2) to improve the 
traceability?

To improve traceability between (1) and (2), you can modify (2) to explicitly 
mention the relationship with the DPU-CCM component mentioned in (1). 
Here's how you can adjust the description:
[…]



Challenge: Which Architecture to Choose?
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What type of task is it?
(A) Understanding 

(B) Generation 

Is there a large enough, reliable, and 
diverse ground truth for the problem?

Is there a large enough, reliable, and 
diverse ground truth for the problem?

Try encoder-decoder 
model first (e.g., T5)

Try decoder-only model 
first (e.g., GPT)

Try encoder-only model 
first (e.g., BERT)

yes yesnono

(A) (B)



• Predictive tasks: 

• Follow best practices

• Is a generative LLM necessary?

• Does it justify the additional computational effort?

Challenge: How to evaluate Generative LLMs?
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• Performance

• Overlap-based (e.g., BLEU, ROUGE, METEOR)

• Semantic Similarity (e.g., BERTScore)

• User

• HiL performance

• Perceived quality

• Acceptance

• Feedback

Challenge: How to evaluate Generative LLMs?
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• Cost

• Operation cost

• Nr. of tokens

• Ethics

• Regulation

• Harmfulness

• Hallucination

• Transparency

The human in the loop becomes even more important for evaluating 
generative LLMs



RE for Effective Prompting
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Prompt Engineering: State of the Art
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• Goals of RE [IREB]

• Knowing all relevant requirements

• Achieving a consensus among the stakeholders about 
these requirements 

• Documenting requirements appropriately

• Managing requirements systematically

Prompt Engineering from an RE Perspective
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• Goals of PromptRE?

• Knowing all relevant prompts

• Achieving a consensus among the stakeholders about 
these prompts 

• Documenting prompts appropriately

• Managing prompts systematically

Prompts are expressions of requirements!



Prompt Smells?
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We want to develop a game for mobile devices. The game has two players who throw a dice in 
each turn. Both players start with 10 points. If the dice shows an even number, the number is 
added to the points of the player, if it shows an uneven number, the points are subtracted. If the 
points of one player are too low, the game ends and the player loses the game.

Please create code in Python that implements this game.

Certainly! Below is a Python implementation of the game:
[…]
if player1_points <= 0:

print("Player 1 has lost the game!")
break

[…]



• General

• What is the role of prompts in the development process? Are they requirements? Intermediate (transitory) 
artifacts? High-level code?

• Traceability

• Which prompts have been derived from which requirements?

• Is all prompt content backed up by requirements?

• Prompt Management

• Which (version of a) prompt generated which code?

• Which LLM (version) has been used?

• Prompt documentation

• Are prompts a good representation of requirements?

RE for and with Prompts
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Summary and Take-Home Messages
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Explore the new opportunities of generative 
LLMs (explanations, dialogs)

RE for and with prompts is an open 
field

Mind the evaluation!

vogelsang@cs.uni-koeln.de

www.linkedin.com/in/prof-andreas-vogelsang
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